ABSTRACT
Since their introduction to the United States (US), the prevalence of electronic cigarettes (ECIGs) has risen
markedly. In 2016, rates of use among high school students was estimated to be 11% and 3.2% among adults.
There is considerable heterogeneity in ECIGs, but common to most is that they use an electrically-powered
heater to aerosolize a liquid usually (though not always) containing nicotine, a solvent (e.g., propylene glycol and/or
vegetable glycerin), and flavorants. The power (Watts=V2/Ω) of the ECIG device, which is based on the device’s
operating voltage (V) and heater resistance (Ohms or Ω), is a major determinant of how much nicotine or other
toxicants are aerosolized. Recent population based surveys are providing insight into ECIG use patterns, but
there are significant gaps in our understanding of ECIG behavioral and health effects. Many surveys are
producing mixed results with respect to whether or not ECIGs aid in smoking cessation efforts or if there are
potential harmful health effects of ECIG use. Heterogeneity in ECIG products that include low power
disposable devices, higher power modular devices, and newer “pod mods” such as JUUL, leads to difficulty in
assessing device characteristics with self-report surveys and may contribute to these mixed and inconclusive
findings. Recent data from our group shows that users of ECIGs are not able to report the power of their device
accurately. As noted in RFA-OD-18-003, studies are needed to determine “how product design characteristics
(and changes in those characteristics) impact constituent exposures and toxicities from tobacco products.”
The premise of this application rests on a growing consensus in the field that in order to inform policy, regulation, and
the public health impact of ECIG use, researchers must improve methods to quantify ECIG device characteristics and
how much ECIG liquid is ingested. In order to advance research in this area, we propose the development of a
novel tool to assess ECIG power objectively in real-world settings. We propose adapting a method being used
in the field of dietary assessment whereby pictures of food are evaluated to measure food intake and the
nutritional quality of the diet. We will apply this methodology to assess ECIG device characteristics and liquids.
Using an iterative design and evaluation process, we will develop a smartphone app (SmartVape) designed for
an ECIG user to capture an image of their device and their liquid(s). On a back-end server, an operator will be
able to compare these images to an image-based product registry with known data on device characteristics
and ECIG liquid nicotine content. The result will be the ability to assess accurately the ECIG device being used
and the amount of liquids being consumed over a discrete period of time. With this information, we will be able
to estimate nicotine intake more accurately from ECIGs in real-world settings. Successful completion of the aims
will move the field forward significantly as it would provide a feasible and objective method for assessing heterogeneity
in ECIG device characteristics in surveillance research and offer an innovative method to remotely quantify ECIG
liquid intake, both of which are barriers that hinder our understanding of the toxicity of ECIG use.
Error Notice
The database may currently be offline for maintenance and should be operational soon. If not, we have been notified of this error and will be reviewing it shortly.
We apologize for the inconvenience.
- The DCCPS Team.