Skip to main content
Grant Details

Grant Number: 5R01CA220581-03 Interpret this number
Primary Investigator: Madabhushi, Anant
Organization: Case Western Reserve University
Project Title: Quantitative Histomorphometric Risk Classifier (QUHBIC) in HPV + Oropharyngeal Carcinoma
Fiscal Year: 2020
Back to top


SUMMARY: In 2016, nearly 50,000 adults in the US were diagnosed with oral and pharyngeal squamous cell carcinoma (SCC), and nearly 10,000 died from the disease. Human papillomavirus (HPV) is now recognized as the most common cause of oropharyngeal (OP) SCC in the US. Although concomitant chemo- and radio-therapy is the most common treatment choice in patients with advanced OP-SCC, they have substantial short- and long- term morbidity and result in increased health care costs in patients who are cured of their cancers. These patients live with sometimes disabling morbidity for many years post-treatment. For these reasons, it has been suggested that therapy in lower risk patients might be de-escalated. There is also a higher risk cohort of patients in whom treatment with chemo-radiation may be insufficient, often resulting in distant metastatic failure. As such, these patients may require intensified therapies to improve outcomes. This is an agonizing choice for patients and their doctors, however. While patients do not want to be sickened by morbid treatments, they are obviously concerned about having the best chance at cure. Unfortunately, there currently are no companion diagnostic tools to identify which HPV + OPSCC patients are at (1) low risk of recurrence such that they can be treated safely to high cure rates with de-escalated therapy; (2) higher risk of failure despite aggressive high dose chemoradiation in whom treatment intensification strategies should be studied. Recently, we developed a quantitative histomorphometric based image risk classifier (QuHbIC) that uses computerized measurements of tumor morphology (e.g. nuclear orientation, texture, shape, architecture) from digital images of H&E-stained tumor sections to predict progression in HPV+ OP-SCC patients; the current version of QuHbIC has already been validated in >400 patients and found to be superior to clinical variables in outcome prediction. In this Academic-Industry Partnership we seek to further improve predictive accuracy of QuHbIC by incorporating new classes of image features relating to stromal morphology, density and patterns of tumor infiltrating lymphocytes, and tumor cell multi-nucleation, features now recognized as promising markers of unfavorable prognosis in HPV+ OP-SCC. We also seek to create a pre-commercial QuHbIC companion diagnostic test that is ready for clinical use in risk stratification in p16+ OP-SCC. QuHbIC will be trained on >700 retrospectively identified HPV + OP-SCC whole tissue slide images with associated long term outcome data and then validated on 440 cases from randomized, controlled, multi-institutional RTOG 0129 and 0522 clinical trials. This partnership will leverage long-standing collaborations in (1) computational histomorphometry from the Madabhushi group at Case Western Reserve University, (2) surgical pathology and oncology expertise in HPV+ OPSCC from Vanderbilt University and the Cleveland Clinic and, (3) Inspirata Inc., a cancer diagnostics company that will bring quality management systems and production software standards to establish QuHbIC as an Affordable Precision Medicine (APM) solution for oropharyngeal cancers.

Back to top


Repeatability of radiomics and machine learning for DWI: Short-term repeatability study of 112 patients with prostate cancer.
Authors: Merisaari H. , Taimen P. , Shiradkar R. , Ettala O. , Pesola M. , Saunavaara J. , Boström P.J. , Madabhushi A. , Aronen H.J. , Jambor I. .
Source: Magnetic resonance in medicine, 2020 Jun; 83(6), p. 2293-2309.
EPub date: 2019-11-08.
PMID: 31703155
Related Citations

Computationally Derived Image Signature of Stromal Morphology Is Prognostic of Prostate Cancer Recurrence Following Prostatectomy in African American Patients.
Authors: Bhargava H.K. , Leo P. , Elliott R. , Janowczyk A. , Whitney J. , Gupta S. , Fu P. , Yamoah K. , Khani F. , Robinson B.D. , et al. .
Source: Clinical cancer research : an official journal of the American Association for Cancer Research, 2020-04-15; 26(8), p. 1915-1923.
EPub date: 2020-03-05.
PMID: 32139401
Related Citations

Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma.
Authors: Beig N. , Bera K. , Prasanna P. , Antunes J. , Correa R. , Singh S. , Saeed Bamashmos A. , Ismail M. , Braman N. , Verma R. , et al. .
Source: Clinical cancer research : an official journal of the American Association for Cancer Research, 2020-04-15; 26(8), p. 1866-1876.
EPub date: 2020-02-20.
PMID: 32079590
Related Citations

Stable and discriminating radiomic predictor of recurrence in early stage non-small cell lung cancer: Multi-site study.
Authors: Khorrami M. , Bera K. , Leo P. , Vaidya P. , Patil P. , Thawani R. , Velu P. , Rajiah P. , Alilou M. , Choi H. , et al. .
Source: Lung cancer (Amsterdam, Netherlands), 2020 Apr; 142, p. 90-97.
EPub date: 2020-02-26.
PMID: 32120229
Related Citations

Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer.
Authors: Khorrami M. , Prasanna P. , Gupta A. , Patil P. , Velu P.D. , Thawani R. , Corredor G. , Alilou M. , Bera K. , Fu P. , et al. .
Source: Cancer immunology research, 2020 Jan; 8(1), p. 108-119.
EPub date: 2019-11-12.
PMID: 31719058
Related Citations

Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology.
Authors: Bera K. , Schalper K.A. , Rimm D.L. , Velcheti V. , Madabhushi A. .
Source: Nature reviews. Clinical oncology, 2019 11; 16(11), p. 703-715.
EPub date: 2019-08-09.
PMID: 31399699
Related Citations

Quantitative nuclear histomorphometric features are predictive of Oncotype DX risk categories in ductal carcinoma in situ: preliminary findings.
Authors: Li H. , Whitney J. , Bera K. , Gilmore H. , Thorat M.A. , Badve S. , Madabhushi A. .
Source: Breast cancer research : BCR, 2019-10-17; 21(1), p. 114.
EPub date: 2019-10-17.
PMID: 31623652
Related Citations

Quantitative Image Analysis of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry for Breast Cancer: Guideline From the College of American Pathologists.
Authors: Bui M.M. , Riben M.W. , Allison K.H. , Chlipala E. , Colasacco C. , Kahn A.G. , Lacchetti C. , Madabhushi A. , Pantanowitz L. , Salama M.E. , et al. .
Source: Archives of pathology & laboratory medicine, 2019 10; 143(10), p. 1180-1195.
EPub date: 2019-01-15.
PMID: 30645156
Related Citations

Predicting pathologic response to neoadjuvant chemoradiation in resectable stage III non-small cell lung cancer patients using computed tomography radiomic features.
Authors: Khorrami M. , Jain P. , Bera K. , Alilou M. , Thawani R. , Patil P. , Ahmad U. , Murthy S. , Stephans K. , Fu P. , et al. .
Source: Lung cancer (Amsterdam, Netherlands), 2019 09; 135, p. 1-9.
EPub date: 2019-07-05.
PMID: 31446979
Related Citations

Correlation between MRI phenotypes and a genomic classifier of prostate cancer: preliminary findings.
Authors: Purysko A.S. , Magi-Galluzzi C. , Mian O.Y. , Sittenfeld S. , Davicioni E. , du Plessis M. , Buerki C. , Bullen J. , Li L. , Madabhushi A. , et al. .
Source: European radiology, 2019 Sep; 29(9), p. 4861-4870.
EPub date: 2019-03-07.
PMID: 30847589
Related Citations

Machine Learning Prediction of Response to Cardiac Resynchronization Therapy: Improvement Versus Current Guidelines.
Authors: Feeny A.K. , Rickard J. , Patel D. , Toro S. , Trulock K.M. , Park C.J. , LaBarbera M.A. , Varma N. , Niebauer M.J. , Sinha S. , et al. .
Source: Circulation. Arrhythmia and electrophysiology, 2019 07; 12(7), p. e007316.
EPub date: 2019-06-20.
PMID: 31216884
Related Citations

The revolving door for AI and pathologists-docendo discimus?
Authors: Van Es S.L. , Madabhushi A. .
Source: Journal of medical artificial intelligence, 2019 Jun; 2, .
EPub date: 2019-06-11.
PMID: 31372599
Related Citations

Applications of machine learning in drug discovery and development.
Authors: Vamathevan J. , Clark D. , Czodrowski P. , Dunham I. , Ferran E. , Lee G. , Li B. , Madabhushi A. , Shah P. , Spitzer M. , et al. .
Source: Nature reviews. Drug discovery, 2019 06; 18(6), p. 463-477.
PMID: 30976107
Related Citations

Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer.
Authors: Braman N. , Prasanna P. , Whitney J. , Singh S. , Beig N. , Etesami M. , Bates D.D.B. , Gallagher K. , Bloch B.N. , Vulchi M. , et al. .
Source: JAMA network open, 2019-04-05; 2(4), p. e192561.
EPub date: 2019-04-05.
PMID: 31002322
Related Citations

Multisite evaluation of radiomic feature reproducibility and discriminability for identifying peripheral zone prostate tumors on MRI.
Authors: Chirra P. , Leo P. , Yim M. , Bloch B.N. , Rastinehad A.R. , Purysko A. , Rosen M. , Madabhushi A. , Viswanath S.E. .
Source: Journal of medical imaging (Bellingham, Wash.), 2019 Apr; 6(2), p. 024502.
EPub date: 2019-06-14.
PMID: 31259199
Related Citations

Radiomics-based convolutional neural network for brain tumor segmentation on multiparametric magnetic resonance imaging.
Authors: Prasanna P. , Karnawat A. , Ismail M. , Madabhushi A. , Tiwari P. .
Source: Journal of medical imaging (Bellingham, Wash.), 2019 Apr; 6(2), p. 024005.
EPub date: 2019-05-07.
PMID: 31093517
Related Citations

HistoQC: An Open-Source Quality Control Tool for Digital Pathology Slides.
Authors: Janowczyk A. , Zuo R. , Gilmore H. , Feldman M. , Madabhushi A. .
Source: JCO clinical cancer informatics, 2019 04; 3, p. 1-7.
PMID: 30990737
Related Citations

Disorder in Pixel-Level Edge Directions on T1WI Is Associated with the Degree of Radiation Necrosis in Primary and Metastatic Brain Tumors: Preliminary Findings.
Authors: Prasanna P. , Rogers L. , Lam T.C. , Cohen M. , Siddalingappa A. , Wolansky L. , Pinho M. , Gupta A. , Hatanpaa K.J. , Madabhushi A. , et al. .
Source: AJNR. American journal of neuroradiology, 2019 03; 40(3), p. 412-417.
EPub date: 2019-02-07.
PMID: 30733252
Related Citations

Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas.
Authors: Beig N. , Khorrami M. , Alilou M. , Prasanna P. , Braman N. , Orooji M. , Rakshit S. , Bera K. , Rajiah P. , Ginsberg J. , et al. .
Source: Radiology, 2019 03; 290(3), p. 783-792.
EPub date: 2018-12-18.
PMID: 30561278
Related Citations

Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non-Small Cell Lung Cancer.
Authors: Corredor G. , Wang X. , Zhou Y. , Lu C. , Fu P. , Syrigos K. , Rimm D.L. , Yang M. , Romero E. , Schalper K.A. , et al. .
Source: Clinical cancer research : an official journal of the American Association for Cancer Research, 2019-03-01; 25(5), p. 1526-1534.
EPub date: 2018-09-10.
PMID: 30201760
Related Citations

Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study.
Authors: Viswanath S.E. , Chirra P.V. , Yim M.C. , Rofsky N.M. , Purysko A.S. , Rosen M.A. , Bloch B.N. , Madabhushi A. .
Source: BMC medical imaging, 2019-02-28; 19(1), p. 22.
EPub date: 2019-02-28.
PMID: 30819131
Related Citations

Mass Effect Deformation Heterogeneity (MEDH) on Gadolinium-contrast T1-weighted MRI is associated with decreased survival in patients with right cerebral hemisphere Glioblastoma: A feasibility study.
Authors: Prasanna P. , Mitra J. , Beig N. , Nayate A. , Patel J. , Ghose S. , Thawani R. , Partovi S. , Madabhushi A. , Tiwari P. .
Source: Scientific reports, 2019-02-04; 9(1), p. 1145.
EPub date: 2019-02-04.
PMID: 30718547
Related Citations

Convolutional neural network initialized active contour model with adaptive ellipse fitting for nuclear segmentation on breast histopathological images.
Authors: Xu J. , Gong L. , Wang G. , Lu C. , Gilmore H. , Zhang S. , Madabhushi A. .
Source: Journal of medical imaging (Bellingham, Wash.), 2019 Jan; 6(1), p. 017501.
EPub date: 2019-02-08.
PMID: 30840729
Related Citations

Shape Features of the Lesion Habitat to Differentiate Brain Tumor Progression from Pseudoprogression on Routine Multiparametric MRI: A Multisite Study.
Authors: Ismail M. , Hill V. , Statsevych V. , Huang R. , Prasanna P. , Correa R. , Singh G. , Bera K. , Beig N. , Thawani R. , et al. .
Source: AJNR. American journal of neuroradiology, 2018 12; 39(12), p. 2187-2193.
EPub date: 2018-11-01.
PMID: 30385468
Related Citations

Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings.
Authors: Shiradkar R. , Ghose S. , Jambor I. , Taimen P. , Ettala O. , Purysko A.S. , Madabhushi A. .
Source: Journal of magnetic resonance imaging : JMRI, 2018 12; 48(6), p. 1626-1636.
EPub date: 2018-05-07.
PMID: 29734484
Related Citations

Stable and discriminating features are predictive of cancer presence and Gleason grade in radical prostatectomy specimens: a multi-site study.
Authors: Leo P. , Elliott R. , Shih N.N.C. , Gupta S. , Feldman M. , Madabhushi A. .
Source: Scientific reports, 2018-10-08; 8(1), p. 14918.
EPub date: 2018-10-08.
PMID: 30297720
Related Citations

Advances in the computational and molecular understanding of the prostate cancer cell nucleus.
Authors: Carleton N.M. , Lee G. , Madabhushi A. , Veltri R.W. .
Source: Journal of cellular biochemistry, 2018 09; 119(9), p. 7127-7142.
EPub date: 2018-06-20.
PMID: 29923622
Related Citations

Novel Quantitative Imaging for Predicting Response to Therapy: Techniques and Clinical Applications.
Authors: Bera K. , Velcheti V. , Madabhushi A. .
Source: American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, 2018-05-23; 38, p. 1008-1018.
PMID: 30231314
Related Citations

Computer-Aided Laser Dissection: A Microdissection Workflow Leveraging Image Analysis Tools.
Authors: Hipp J.D. , Johann D.J. , Chen Y. , Madabhushi A. , Monaco J. , Cheng J. , Rodriguez-Canales J. , Stumpe M.C. , Riedlinger G. , Rosenberg A.Z. , et al. .
Source: Journal of pathology informatics, 2018; 9, p. 45.
EPub date: 2018-12-11.
PMID: 30622835
Related Citations

Back to Top