Grant Details
Grant Number: |
5R01CA121245-09 Interpret this number |
Primary Investigator: |
Tavtigian, Sean |
Organization: |
University Of Utah |
Project Title: |
Common and Rare Sequence Variants in Breast Cancer Risk |
Fiscal Year: |
2020 |
Abstract
Abstract
The research proposed here is in the area of cancer predisposition genetics, and its focus is on the moderate-
risk cancer susceptibility genes (ATM, CHEK2, etc.) in the biochemical pathway responsible for DNA double
strand break homologous recombination repair (HRR). Most of the genes in the HRR pathway are breast
cancer susceptibility genes, with several also being ovarian cancer susceptibility genes and/or pancreatic
cancer susceptibility genes. ¶ In the first funding cycle, we discovered that the majority of pathogenic alleles
in the moderate-risk HRR genes are individually rare missense substitutions (rather than the individually rare
protein truncating variants that dominate the mutation spectrum of BRCA1 and BRCA2). From a clinical
cancer genetics and patient counseling point of view, this observation creates a serious problem: the clinical
testing labs typically report these rare missense substitutions as Variants of Unclear Significance (VUS).
Because the VUS are not used for patient counseling, this means that the majority of the bona fide genetic risk
detectable in the moderate-risk HRR genes by the panel tests is not used for patient counseling and risk
management! ¶ Over the last 12 years, we played a central role in development of methods for clinical
classification of VUS in BRCA1 and BRCA2, and are currently developing corresponding methods for the
colorectal (and other cancer) susceptibility genes MLH1, MSH2, PMS2, and MSH6. Here, we hypothesize that
combining improved computational methods for rare missense substitution evaluation with comprehensive
high-throughput functional assays will dramatically accelerate the process of evaluation and classification of
clinically observed VUS. Thus the first Aim of the project focuses on confirming and then improving the
accuracy of computational methods for evaluation of rare missense substitution. The second Aim is directed
towards development of medium-to-high throughput assays of missense substitution functionality. In terms of
genes, we will begin these studies with the RING domain of BRCA1 (which lacks a properly calibrated
functional assay), and then progress to ATM and then CHEK2. In the third Aim, we re-calibrate the outputs
from the computational methods of Aim 1 and the functional assays of Aim 2 into probabilities (or odds) in favor
of pathogenicity, the key variables required for clinical-quality classification of sequence variants observed in
people. We then combine these data to obtain posterior probabilities in favor of pathogenicity and pass those
posterior probabilities through a well-recognized categorical classifier (the IARC standards) to generate
classification recommendations for clinicians and patients. Progress across the three Aims of this study will
dramatically accelerate variant classification while simultaneously improving the sensitivity and precision of the
clinical testing process.
Publications
A look into DGAT1 through the EM lenses.
Authors: Panigrahi R.
, Glover J.N.M.
, Nallusamy S.
.
Source: Biochimica Et Biophysica Acta. Biomembranes, 2023-01-01 00:00:00.0; 1865(1), p. 184069.
EPub date: 2022-10-07 00:00:00.0.
PMID: 36216097
Related Citations
Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria.
Authors: Pejaver V.
, Byrne A.B.
, Feng B.J.
, Pagel K.A.
, Mooney S.D.
, Karchin R.
, O'Donnell-Luria A.
, Harrison S.M.
, Tavtigian S.V.
, Greenblatt M.S.
, et al.
.
Source: American Journal Of Human Genetics, 2022-12-01 00:00:00.0; 109(12), p. 2163-2177.
EPub date: 2022-11-21 00:00:00.0.
PMID: 36413997
Related Citations
Comprehensive evaluation and efficient classification of BRCA1 RING domain missense substitutions.
Authors: Clark K.A.
, Paquette A.
, Tao K.
, Bell R.
, Boyle J.L.
, Rosenthal J.
, Snow A.K.
, Stark A.W.
, Thompson B.A.
, Unger J.
, et al.
.
Source: American Journal Of Human Genetics, 2022-06-02 00:00:00.0; 109(6), p. 1153-1174.
PMID: 35659930
Related Citations
Structural insights into DNA double-strand break signaling.
Authors: Panigrahi R.
, Glover J.N.M.
.
Source: The Biochemical Journal, 2021-01-15 00:00:00.0; 478(1), p. 135-156.
PMID: 33439989
Related Citations
Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines.
Authors: Tavtigian S.V.
, Harrison S.M.
, Boucher K.M.
, Biesecker L.G.
.
Source: Human Mutation, 2020-07-27 00:00:00.0; , .
EPub date: 2020-07-27 00:00:00.0.
PMID: 32720330
Related Citations
Two integrated and highly predictive functional analysis-based procedures for the classification of MSH6 variants in Lynch syndrome.
Authors: Drost M.
, Tiersma Y.
, Glubb D.
, Kathe S.
, van Hees S.
, Calléja F.
, Zonneveld J.B.M.
, Boucher K.M.
, Ramlal R.P.E.
, Thompson B.A.
, et al.
.
Source: Genetics In Medicine : Official Journal Of The American College Of Medical Genetics, 2020 05; 22(5), p. 847-856.
EPub date: 2020-01-22 00:00:00.0.
PMID: 31965077
Related Citations
Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework.
Authors: Brnich S.E.
, Abou Tayoun A.N.
, Couch F.J.
, Cutting G.R.
, Greenblatt M.S.
, Heinen C.D.
, Kanavy D.M.
, Luo X.
, McNulty S.M.
, Starita L.M.
, et al.
.
Source: Genome Medicine, 2019-12-31 00:00:00.0; 12(1), p. 3.
EPub date: 2019-12-31 00:00:00.0.
PMID: 31892348
Related Citations
Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification.
Authors: Parsons M.T.
, Tudini E.
, Li H.
, Hahnen E.
, Wappenschmidt B.
, Feliubadaló L.
, Aalfs C.M.
, Agata S.
, Aittomäki K.
, Alducci E.
, et al.
.
Source: Human Mutation, 2019 Sep; 40(9), p. 1557-1578.
PMID: 31131967
Related Citations
A functional assay-based procedure to classify mismatch repair gene variants in Lynch syndrome.
Authors: Drost M.
, Tiersma Y.
, Thompson B.A.
, Frederiksen J.H.
, Keijzers G.
, Glubb D.
, Kathe S.
, Osinga J.
, Westers H.
, Pappas L.
, et al.
.
Source: Genetics In Medicine : Official Journal Of The American College Of Medical Genetics, 2018-12-03 00:00:00.0; , .
EPub date: 2018-12-03 00:00:00.0.
PMID: 30504929
Related Citations
Improved, ACMG-compliant, in silico prediction of pathogenicity for missense substitutions encoded by TP53 variants.
Authors: Fortuno C.
, James P.A.
, Young E.L.
, Feng B.
, Olivier M.
, Pesaran T.
, Tavtigian S.V.
, Spurdle A.B.
.
Source: Human Mutation, 2018-05-18 00:00:00.0; , .
EPub date: 2018-05-18 00:00:00.0.
PMID: 29775997
Related Citations
Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework.
Authors: Tavtigian S.V.
, Greenblatt M.S.
, Harrison S.M.
, Nussbaum R.L.
, Prabhu S.A.
, Boucher K.M.
, Biesecker L.G.
.
Source: Genetics In Medicine : Official Journal Of The American College Of Medical Genetics, 2018-01-04 00:00:00.0; , .
EPub date: 2018-01-04 00:00:00.0.
PMID: 29300386
Related Citations
Multigene testing of moderate-risk genes: be mindful of the missense.
Authors: Young E.L.
, Feng B.J.
, Stark A.W.
, Damiola F.
, Durand G.
, Forey N.
, Francy T.C.
, Gammon A.
, Kohlmann W.K.
, Kaphingst K.A.
, et al.
.
Source: Journal Of Medical Genetics, 2016 Jun; 53(6), p. 366-76.
PMID: 26787654
Related Citations
No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing.
Authors: Easton D.F.
, Lesueur F.
, Decker B.
, Michailidou K.
, Li J.
, Allen J.
, Luccarini C.
, Pooley K.A.
, Shah M.
, Bolla M.K.
, et al.
.
Source: Journal Of Medical Genetics, 2016 May; 53(5), p. 298-309.
PMID: 26921362
Related Citations
ABRAXAS (FAM175A) and Breast Cancer Susceptibility: No Evidence of Association in the Breast Cancer Family Registry.
Authors: Renault A.L.
, Lesueur F.
, Coulombe Y.
, Gobeil S.
, Soucy P.
, Hamdi Y.
, Desjardins S.
, Le Calvez-Kelm F.
, Vallée M.
, Voegele C.
, et al.
.
Source: Plos One, 2016; 11(6), p. e0156820.
EPub date: 2016-06-07 00:00:00.0.
PMID: 27270457
Related Citations
Rare mutations in RINT1 predispose carriers to breast and Lynch syndrome-spectrum cancers.
Authors: Park D.J.
, Tao K.
, Le Calvez-Kelm F.
, Nguyen-Dumont T.
, Robinot N.
, Hammet F.
, Odefrey F.
, Tsimiklis H.
, Teo Z.L.
, Thingholm L.B.
, et al.
.
Source: Cancer Discovery, 2014 Jul; 4(7), p. 804-15.
PMID: 25050558
Related Citations
Growing Recognition Of The Role For rare Missense Substitutions In Breast Cancer Susceptibility
Authors: Tavtigian S.V.
, Chenevix-Trench G.
.
Source: Biomarkers In Medicine, 2014; 8(4), p. 589-603.
PMID: 24796624
Related Citations
Rare Key Functional Domain Missense Substitutions In Mre11a, Rad50, And Nbn Contribute To Breast Cancer Susceptibility: Results From A Breast Cancer Family Registry Case-control Mutation-screening Study
Authors: Damiola F.
, Pertesi M.
, Oliver J.
, Le Calvez-Kelm F.
, Voegele C.
, Young E.L.
, Robinot N.
, Forey N.
, Durand G.
, Vallée M.P.
, et al.
.
Source: Breast Cancer Research : Bcr, 2014; 16(3), p. R58.
PMID: 24894818
Related Citations
Rare mutations in XRCC2 increase the risk of breast cancer.
Authors: Park D.J.
, Lesueur F.
, Nguyen-Dumont T.
, Pertesi M.
, Odefrey F.
, Hammet F.
, Neuhausen S.L.
, John E.M.
, Andrulis I.L.
, Terry M.B.
, et al.
.
Source: American Journal Of Human Genetics, 2012-04-06 00:00:00.0; 90(4), p. 734-9.
EPub date: 2012-04-06 00:00:00.0.
PMID: 22464251
Related Citations
Rad51 And Breast Cancer Susceptibility: No Evidence For Rare Variant Association In The Breast Cancer Family Registry Study
Authors: Le Calvez-Kelm F.
, Oliver J.
, Damiola F.
, Forey N.
, Robinot N.
, Durand G.
, Voegele C.
, Vallée M.P.
, Byrnes G.
, Registry B.C.
, et al.
.
Source: Plos One, 2012; 7(12), p. e52374.
PMID: 23300655
Related Citations
Tests Of Association For Rare Variants: Case Control Mutation Screening
Authors: Tavtigian S.V.
, Hashibe M.
, Thomas A.
.
Source: Nature Reviews. Genetics, 2011 Mar; 12(3), p. 224.
PMID: 21283087
Related Citations
Rare, Evolutionarily Unlikely Missense Substitutions In Chek2 Contribute To Breast Cancer Susceptibility: Results From A Breast Cancer Family Registry Case-control Mutation-screening Study
Authors: Le Calvez-Kelm F.
, Lesueur F.
, Damiola F.
, Vallée M.
, Voegele C.
, Babikyan D.
, Durand G.
, Forey N.
, McKay-Chopin S.
, Robinot N.
, et al.
.
Source: Breast Cancer Research : Bcr, 2011; 13(1), p. R6.
PMID: 21244692
Related Citations
Detecting Differential Allelic Expression Using High-resolution Melting Curve Analysis: Application To The Breast Cancer Susceptibility Gene Chek2
Authors: Nguyen-Dumont T.
, Jordheim L.P.
, Michelon J.
, Forey N.
, McKay-Chopin S.
, Kathleen Cuningham Foundation Consortium for Research into Familial Aspects of Breast Cancer
, Sinilnikova O.
, Le Calvez-Kelm F.
, Southey M.C.
, Tavtigian S.V.
, et al.
.
Source: Bmc Medical Genomics, 2011; 4, p. 39.
PMID: 21569354
Related Citations
Rare Variants In The Atm Gene And Risk Of Breast Cancer
Authors: Goldgar D.E.
, Healey S.
, Dowty J.G.
, Da Silva L.
, Chen X.
, Spurdle A.B.
, Terry M.B.
, Daly M.J.
, Buys S.M.
, Southey M.C.
, et al.
.
Source: Breast Cancer Research : Bcr, 2011; 13(4), p. R73.
PMID: 21787400
Related Citations
Rare, Evolutionarily Unlikely Missense Substitutions In Atm Confer Increased Risk Of Breast Cancer
Authors: Tavtigian S.V.
, Oefner P.J.
, Babikyan D.
, Hartmann A.
, Healey S.
, Le Calvez-Kelm F.
, Lesueur F.
, Byrnes G.B.
, Chuang S.C.
, Forey N.
, et al.
.
Source: American Journal Of Human Genetics, 2009 Oct; 85(4), p. 427-46.
PMID: 19781682
Related Citations
Description And Validation Of High-throughput Simultaneous Genotyping And Mutation Scanning By High-resolution Melting Curve Analysis
Authors: Nguyen-Dumont T.
, Calvez-Kelm F.L.
, Forey N.
, McKay-Chopin S.
, Garritano S.
, Gioia-Patricola L.
, De Silva D.
, Weigel R.
, Sangrajrang S.
, Lesueur F.
, et al.
.
Source: Human Mutation, 2009 Jun; 30(6), p. 884-90.
PMID: 19347964
Related Citations
Association Of Esr1 Gene Tagging Snps With Breast Cancer Risk
Authors: Dunning A.M.
, Healey C.S.
, Baynes C.
, Maia A.T.
, Scollen S.
, Vega A.
, Rodríguez R.
, Barbosa-Morais N.L.
, Ponder B.A.
, SEARCH
, et al.
.
Source: Human Molecular Genetics, 2009-03-15 00:00:00.0; 18(6), p. 1131-9.
PMID: 19126777
Related Citations
Classification Of Rare Missense Substitutions, Using Risk Surfaces, With Genetic- And Molecular-epidemiology Applications
Authors: Tavtigian S.V.
, Byrnes G.B.
, Goldgar D.E.
, Thomas A.
.
Source: Human Mutation, 2008 Nov; 29(11), p. 1342-54.
PMID: 18951461
Related Citations