Grant Details
Grant Number: |
1R03CA235122-01A1 Interpret this number |
Primary Investigator: |
Wang, Ching-Yun |
Organization: |
Fred Hutchinson Cancer Research Center |
Project Title: |
Novel Methods for Missing Subtype Data in Colorectal Cancer |
Fiscal Year: |
2019 |
Abstract
Project Summary/Abstract
The proposed project is in response to PAR-18-021, NCI Small Grants Program for Cancer Research (NCI
Omnibus R03). We are motivated by the resources in the Genetics and Epidemiology of Colorectal Cancer
Consortium (GECCO). We are primarily interested in developing and applying innovative statistical methods
for missing cancer subtype data. Many diseases, such as colorectal cancer (CRC), are heterogeneous.
Molecular characterization of tumors has provided evidence of multiple tumor subtypes that develop through
activation of diverse neoplastic pathways. Important CRC tumor subtypes include microsatellite instability
(MSI) status, somatic mutations in BRAF and KRAS, and CpG island methylator phenotype. For instance,
MSI status is associated with survival outcomes and treatment response. However, some individuals may
have unknown MSI status, and other tumor biomarkers. Regression analysis may encounter a challenge
due to missing data in some individuals of the study cohort. Methodology for missing data is often required
to address the issue on bias in effect estimation and efficiency. Specific aims of this proposal include:
(i) To develop and apply methods to take into account missing cancer subtype data in multinomial logistic
regression. (ii) To develop and apply methods to adjust for survival analysis among cancer cases in which
multiple tumor biomarkers may be missing. The methods developed in the proposal are applicable to the
GECCO and other studies where cancer subtype data may be unknown among some study individuals. The
methods can be applied to other common study designs such as nested case-control designs and
Cox regression with competing risks.
Publications
Robust best linear weighted estimator with missing covariates in survival analysis.
Authors: Wang C.Y.
, Hsu L.
, Harrison T.
.
Source: Statistics In Medicine, 2024-02-25 00:00:00.0; , .
EPub date: 2024-02-25 00:00:00.0.
PMID: 38402690
Related Citations
Generalized Linear Models with Covariate Measurement Error and Zero-Inflated Surrogates.
Authors: Wang C.Y.
, de Dieu Tapsoba J.
, Duggan C.
, McTiernan A.
.
Source: Mathematics (basel, Switzerland), 2024 Jan; 12(2), .
EPub date: 2024-01-17 00:00:00.0.
PMID: 38773986
Related Citations
Biomarker data with measurement error in medical research: A literature review.
Authors: Wang C.Y.
, Hwang W.H.
, Song X.
.
Source: Wiley Interdisciplinary Reviews. Computational Statistics, 2024 Jan-Feb; 16(1), .
EPub date: 2024-01-21 00:00:00.0.
PMID: 39113782
Related Citations
A Flexible Method for Diagnostic Accuracy with Biomarker Measurement Error.
Authors: Wang C.Y.
, Feng Z.
.
Source: Mathematics (basel, Switzerland), 2023-02-01 00:00:00.0; 11(3), .
EPub date: 2023-01-19 00:00:00.0.
PMID: 37251695
Related Citations
Population Size Estimation using Zero-truncated Poisson Regression with Measurement Error.
Authors: Hwang W.H.
, Stoklosa J.
, Wang C.Y.
.
Source: Journal Of Agricultural, Biological, And Environmental Statistics, 2022 Jun; 27(2), p. 303-320.
EPub date: 2022-01-12 00:00:00.0.
PMID: 35813491
Related Citations
A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error-contaminated continuous time-dependent exposure.
Authors: Song X.
, Chao E.C.
, Wang C.Y.
.
Source: Biometrics, 2021-10-25 00:00:00.0; , .
EPub date: 2021-10-25 00:00:00.0.
PMID: 34694632
Related Citations
Multinomial logistic regression with missing outcome data: An application to cancer subtypes.
Authors: Wang C.Y.
, Hsu L.
.
Source: Statistics In Medicine, 2020-07-06 00:00:00.0; , .
EPub date: 2020-07-06 00:00:00.0.
PMID: 32628308
Related Citations
Semiparametric regression calibration for general hazard models in survival analysis with covariate measurement error; surprising performance under linear hazard.
Authors: Wang C.Y.
, Song X.
.
Source: Biometrics, 2020-06-18 00:00:00.0; , .
EPub date: 2020-06-18 00:00:00.0.
PMID: 32557567
Related Citations
Methods for generalized change-point models: with applications to human immunodeficiency virus surveillance and diabetes data.
Authors: Tapsoba J.D.
, Wang C.Y.
, Zangeneh S.
, Chen Y.Q.
.
Source: Statistics In Medicine, 2020-01-29 00:00:00.0; , .
EPub date: 2020-01-29 00:00:00.0.
PMID: 31997385
Related Citations