Project Summary/Abstract
This is an application for a K07 award for Dr. Heidi Hanson, a tenure-line Assistant Professor of
Surgery at the University of Utah. Dr. Hanson is establishing herself as a young investigator in genetic and
environmental cancer epidemiology. Her training in sociology, demography, and life course epidemiology,
experience with advance quantitative methodologies, and familiarity with the Utah Population Database
perfectly poise her innovative work in this field of study. However, she is lacking the necessary training in:
1) cancer biology and pathology; 2) cutting-edge genetic epidemiology pedigree methods; 3) genomic and
epigenetic tumor profiling; and 4) managing and implementing successful multidisciplinary team science. This
training will allow Dr. Hanson to achieve her goal to launch an independent cancer research program focused
on improving precision strategies of cancer screening and treatment methods through gene-environment
scientific discoveries. Dr. Hanson has assembled a mentoring team comprising of a primary mentor, Dr. Nicola
Camp, a genetic epidemiologist and nationally renowned investigator, and two co-mentors: Dr. Orly Alter, a
Utah Science Technology and Research Initiative (USTAR) associate professor of bioengineering and human
genetics, and Dr. Ken Smith, an internationally known expert in population-based analyses and genetic/family
epidemiology. Dr. Hanson has six advisors and one contributor with expertise in urologic oncology, clinical
outcomes in urologic malignancies and health services research, etiology of bladder cancer, epigenetic
changes, high risk cancer studies, pathology, and environmental epidemiology.
Bladder cancer (BCa) is a heterogeneous disease, with strong support for multiple subtypes, including
a basal/squamous-like (BASQ) tumor subtype. However, there is a lack of consensus for the number and
characteristics of additional subtypes. BCa risk may be driven by both genetic and environmental risk factors,
with different etiologies yielding different subtypes of BCa. In terms of familial clustering, these different
etiological factors may exhibit as different multi-cancer configurations across a spectrum of organs (tumor
spectrum). Using dimension reduction techniques to perform an integrative multi-omic analysis of BCa
expression and methylation combined with information on etiological factors associated with BCa risk can lead
to the identification of subtypes of BCa that are epidemiologically and clinically relevant. Dr. Hanson will
accomplish this through the following research specific aims: 1) Utilize dimension reduction techniques for
integrative analysis of BCa multi-omics data; 2) Determine BCa dimensions associated with environmentally-
driven BCa subtypes; 3) Identify BCa dimensions associated with genetically-driven BCa subtypes. This
research will prepare Dr. Hanson to design and implement a novel R01 application to further investigate the
multi-omic cancer profiles across a spectrum of organs and advance gene-environment research.
If you are accessing this page during weekend or evening hours, the database may currently be offline for maintenance and should operational within a few hours. Otherwise, we have been notified of this error and will be addressing it immediately.
Please
contact us if this error persists.
We apologize for the inconvenience.
- The DCCPS Team.