Skip to main content
An official website of the United States government
Grant Details

Grant Number: 1U01CA220401-01A1 Interpret this number
Primary Investigator: Cooper, Lee
Organization: Emory University
Project Title: Informatics Tools for Quantitative Digital Pathology Profiling and Integrated Prognostic Modeling
Fiscal Year: 2018


Abstract

PROJECT SUMMARY Accurate biomarker-driven prognostic stratification, response prediction, and cohort enrichment are critical for realizing precision treatment strategies and population health management approaches that optimize quality of life and survival for cancer patients. Genomics holds promise for improving classification and prognostication of malignancies, yet oncology practice continues to rely heavily on immunohistochemistry (IHC) as a fundamental tool due to its practicality and ability to provide protein-level and subcellular localization information. The goal of this proposal is to create an open-source software resource for the quantitative analysis of IHC stained tissues and effective integration of IHC, genomic, and clinical features for cancer classification and prognostication. This proposal builds on our collective experience in computer-assisted analysis of microscopic images (including IHC images), development of machine-learning methods to address the challenges of classification and prognostication with heterogeneous and high-dimensional data, and leadership in collection and large-scale analysis of cancer outcomes involving collaboration with multiple medical centers. This effort for the first time will create tools to integrate quantitative IHC imaging, clinical, and genomic information that will in turn enable the research community to explore strategies for the classification of malignancies and prediction of outcomes. The proposed tools will be developed and extensively validated in close collaboration with clinical, genomic, and digital pathology data from the NCI-supported Lymphoma Epidemiology of Outcomes (LEO) cohort study. The software tools produced by this proposal will enable the characterization of subcellular protein expression in cell nuclei, membranes and cytoplasmic compartments. Spatial features of protein expression heterogeneity, along with patient-level summaries of protein expression will be used to develop machine-learning classifiers for cancer subtypes, using diffuse large b-cell lymphomas as a driving application. Technology for automatic tuning of machine learning algorithms will enable a broad class of clinically and biologically motivated users to utilize these tools in their investigations. We will also provide an interactive dashboard that enables users to integrate genomic and IHC-based features to explore prognostic models of patient survival. These tools will be released and documented under an open-source model, integrated with HistomicsTK (https://histomicstk.readthedocs.io/en/latest/), and available to the broader cancer research community.



Publications

A panoptic segmentation dataset and deep-learning approach for explainable scoring of tumor-infiltrating lymphocytes.
Authors: Liu S. , Amgad M. , More D. , Rathore M.A. , Salgado R. , Cooper L.A.D. .
Source: Npj Breast Cancer, 2024-06-28 00:00:00.0; 10(1), p. 52.
EPub date: 2024-06-28 00:00:00.0.
PMID: 38942745
Related Citations

Tissue Contamination Challenges the Credibility of Machine Learning Models in Real World Digital Pathology.
Authors: Irmakci I. , Nateghi R. , Zhou R. , Vescovo M. , Saft M. , Ross A.E. , Yang X.J. , Cooper L.A.D. , Goldstein J.A. .
Source: Modern Pathology : An Official Journal Of The United States And Canadian Academy Of Pathology, Inc, 2024 Mar; 37(3), p. 100422.
EPub date: 2024-01-06 00:00:00.0.
PMID: 38185250
Related Citations

Translating prognostic quantification of c-MYC and BCL2 from tissue microarrays to whole slide images in diffuse large B-cell lymphoma using deep learning.
Authors: Tavolara T.E. , Niazi M.K.K. , Feldman A.L. , Jaye D.L. , Flowers C. , Cooper L.A.D. , Gurcan M.N. .
Source: Diagnostic Pathology, 2024-01-19 00:00:00.0; 19(1), p. 17.
EPub date: 2024-01-19 00:00:00.0.
PMID: 38243330
Related Citations

A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer.
Authors: Amgad M. , Hodge J.M. , Elsebaie M.A.T. , Bodelon C. , Puvanesarajah S. , Gutman D.A. , Siziopikou K.P. , Goldstein J.A. , Gaudet M.M. , Teras L.R. , et al. .
Source: Nature Medicine, 2023-11-27 00:00:00.0; , .
EPub date: 2023-11-27 00:00:00.0.
PMID: 38012314
Related Citations

Automated Deep Learning-Based Diagnosis and Molecular Characterization of Acute Myeloid Leukemia using Flow Cytometry.
Authors: Lewis J.E. , Cooper L.A.D. , Jaye D.L. , Pozdnyakova O. .
Source: Biorxiv : The Preprint Server For Biology, 2023-09-25 00:00:00.0; , .
EPub date: 2023-09-25 00:00:00.0.
PMID: 37808719
Related Citations

A population-level computational histologic signature for invasive breast cancer prognosis.
Authors: Amgad M. , Hodge J. , Elsebaie M. , Bodelon C. , Puvanesarajah S. , Gutman D. , Siziopikou K. , Goldstein J. , Gaudet M. , Teras L. , et al. .
Source: Research Square, 2023-05-26 00:00:00.0; , .
EPub date: 2023-05-26 00:00:00.0.
PMID: 37293118
Related Citations

Tissue contamination challenges the credibility of machine learning models in real world digital pathology.
Authors: Irmakci I. , Nateghi R. , Zhou R. , Ross A.E. , Yang X.J. , Cooper L.A.D. , Goldstein J.A. .
Source: Medrxiv : The Preprint Server For Health Sciences, 2023-05-02 00:00:00.0; , .
EPub date: 2023-05-02 00:00:00.0.
PMID: 37205404
Related Citations

Machine learning classification of placental villous infarction, perivillous fibrin deposition, and intervillous thrombus.
Authors: Goldstein J.A. , Nateghi R. , Irmakci I. , Cooper L.A.D. .
Source: Placenta, 2023 Apr; 135, p. 43-50.
EPub date: 2023-03-15 00:00:00.0.
PMID: 36958179
Related Citations

Machine learning classification of placental villous infarction, perivillous fibrin deposition, and intervillous thrombus.
Authors: Goldstein J.A. , Nateghi R. , Irmakci I. , Cooper L.A.D. .
Source: Placenta, 2023 Apr; 135, p. 43-50.
EPub date: 2023-03-15 00:00:00.0.
PMID: 36958179
Related Citations

An Automated Pipeline for Differential Cell Counts on Whole-Slide Bone Marrow Aspirate Smears.
Authors: Lewis J.E. , Shebelut C.W. , Drumheller B.R. , Zhang X. , Shanmugam N. , Attieh M. , Horwath M.C. , Khanna A. , Smith G.H. , Gutman D.A. , et al. .
Source: Modern Pathology : An Official Journal Of The United States And Canadian Academy Of Pathology, Inc, 2023 Feb; 36(2), p. 100003.
EPub date: 2023-01-09 00:00:00.0.
PMID: 36853796
Related Citations

NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer.
Authors: Amgad M. , Atteya L.A. , Hussein H. , Mohammed K.H. , Hafiz E. , Elsebaie M.A.T. , Alhusseiny A.M. , AlMoslemany M.A. , Elmatboly A.M. , Pappalardo P.A. , et al. .
Source: Gigascience, 2022-05-17 00:00:00.0; 11, .
PMID: 35579553
Related Citations

Explainable nucleus classification using Decision Tree Approximation of Learned Embeddings.
Authors: Amgad M. , Atteya L.A. , Hussein H. , Mohammed K.H. , Hafiz E. , Elsebaie M.A.T. , Mobadersany P. , Manthey D. , Gutman D.A. , Elfandy H. , et al. .
Source: Bioinformatics (oxford, England), 2022-01-03 00:00:00.0; 38(2), p. 513-519.
PMID: 34586355
Related Citations

Learning from crowds in digital pathology using scalable variational Gaussian processes.
Authors: López-Pérez M. , Amgad M. , Morales-Álvarez P. , Ruiz P. , Cooper L.A.D. , Molina R. , Katsaggelos A.K. .
Source: Scientific Reports, 2021-06-02 00:00:00.0; 11(1), p. 11612.
EPub date: 2021-06-02 00:00:00.0.
PMID: 34078955
Related Citations

GestAltNet: aggregation and attention to improve deep learning of gestational age from placental whole-slide images.
Authors: Mobadersany P. , Cooper L.A.D. , Goldstein J.A. .
Source: Laboratory Investigation; A Journal Of Technical Methods And Pathology, 2021-03-05 00:00:00.0; , .
EPub date: 2021-03-05 00:00:00.0.
PMID: 33674784
Related Citations

Interactive classification of whole-slide imaging data for cancer researchers.
Authors: Lee S. , Amgad M. , Mobadersany P. , McCormick M. , Pollack B.P. , Elfandy H. , Hussein H. , Gutman D.A. , Cooper L.A. .
Source: Cancer Research, 2020-12-21 00:00:00.0; , .
EPub date: 2020-12-21 00:00:00.0.
PMID: 33355190
Related Citations

Artificial Intelligence and Algorithmic Computational Pathology: Introduction with Renal Allograft Examples.
Authors: Farris A.B. , Vizcarra J. , Amgad M. , Cooper L.A.D. , Gutman D. , Hogan J. .
Source: Histopathology, 2020-11-19 00:00:00.0; , .
EPub date: 2020-11-19 00:00:00.0.
PMID: 33211332
Related Citations

A narrative review of digital pathology and artificial intelligence: focusing on lung cancer.
Authors: Sakamoto T. , Furukawa T. , Lami K. , Pham H.H.N. , Uegami W. , Kuroda K. , Kawai M. , Sakanashi H. , Cooper L.A.D. , Bychkov A. , et al. .
Source: Translational Lung Cancer Research, 2020 Oct; 9(5), p. 2255-2276.
PMID: 33209648
Related Citations

Genome-defined African ancestry is associated with distinct mutations and worse survival in patients with diffuse large B-cell lymphoma.
Authors: Lee M.J. , Koff J.L. , Switchenko J.M. , Jhaney C.I. , Harkins R.A. , Patel S.P. , Dave S.S. , Flowers C.R. .
Source: Cancer, 2020-08-01 00:00:00.0; 126(15), p. 3493-3503.
EPub date: 2020-05-29 00:00:00.0.
PMID: 32469082
Related Citations

Semantic segmentation to identify bladder layers from H&E Images.
Authors: Niazi M.K.K. , Yazgan E. , Tavolara T.E. , Li W. , Lee C.T. , Parwani A. , Gurcan M.N. .
Source: Diagnostic Pathology, 2020-07-16 00:00:00.0; 15(1), p. 87.
EPub date: 2020-07-16 00:00:00.0.
PMID: 32677978
Related Citations

Clustering of cutaneous T-cell lymphoma is associated with increased levels of the environmental toxins benzene and trichloroethylene in the state of Georgia.
Authors: Clough L. , Bayakly A.R. , Ward K.C. , Khan M.K. , Chen S.C. , Lechowicz M.J. , Flowers C.R. , Allen P.B. , Switchenko J.M. .
Source: Cancer, 2020-04-15 00:00:00.0; 126(8), p. 1700-1707.
EPub date: 2020-01-14 00:00:00.0.
PMID: 31943154
Related Citations

Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells.
Authors: Chandradevan R. , Aljudi A.A. , Drumheller B.R. , Kunananthaseelan N. , Amgad M. , Gutman D.A. , Cooper L.A.D. , Jaye D.L. .
Source: Laboratory Investigation; A Journal Of Technical Methods And Pathology, 2019-09-30 00:00:00.0; , .
EPub date: 2019-09-30 00:00:00.0.
PMID: 31570774
Related Citations

A population-based multistate model for diffuse large B-cell lymphoma-specific mortality in older patients.
Authors: Çağlayan Ç. , Goldstein J.S. , Ayer T. , Rai A. , Flowers C.R. .
Source: Cancer, 2019-06-01 00:00:00.0; 125(11), p. 1837-1847.
EPub date: 2019-02-01 00:00:00.0.
PMID: 30707765
Related Citations

Digital pathology and artificial intelligence.
Authors: Niazi M.K.K. , Parwani A.V. , Gurcan M.N. .
Source: The Lancet. Oncology, 2019 May; 20(5), p. e253-e261.
PMID: 31044723
Related Citations

Informatics Approaches to Address New Challenges in the Classification of Lymphoid Malignancies.
Authors: Jordan J. , Goldstein J.S. , Jaye D.L. , Gurcan M. , Flowers C.R. , Cooper L.A.D. .
Source: Jco Clinical Cancer Informatics, 2018; 2, .
EPub date: 2018-02-09 00:00:00.0.
PMID: 30637363
Related Citations




Back to Top