Skip to main content

COVID-19 Resources

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.cdc.gov/coronavirus

Get the latest research information from NIH: https://www.covid19.nih.gov

Grant Details

Grant Number: 5R03CA179665-02 Interpret this number
Primary Investigator: Lawson, Andrew
Organization: Medical University Of South Carolina
Project Title: Surveillance of Spatial Case Event Data in Cancer Studies
Fiscal Year: 2015


Abstract

DESCRIPTION (provided by applicant): The development of appropriate methods of analysis for surveillance of spatial health data is of critical importance to public health practitioners, yt surveillance for emerging outbreaks of disease in space and time is a relatively undeveloped arena of statistical methodology. Most of the vast literature in space-time surveillance has been developed for retrospective analyses of complete data sets. However, data in public health accumulate over time and sequential estimation of the model using all the data collected so far is a key concept to early detection of localized disease outbreaks. The impact derived from timely treatment and control measures can be dramatic, especially when monitoring maps of cancer disease-incidence, one of the leading causes of death worldwide. The goal of this application is to develop a statistical methodology for prospective spatio- temporal disease surveillance, with cancer surveillance being our primary focus. This technique will be used to detect areas of increased disease incidence as quickly as possible to reduce morbidity and mortality. The conditional predictive ordinate is a Bayesian diagnostic tool that detects unusual observations and it is proposed to extend its use to case event incidence. We will test these hypotheses in three specific aims. In specific Aim 1 we will adapt the conditional predictive ordinate in a case event surveillance setting. In specific Aim 2 the focus is the evaluation of computation approaches, and the implementation of the surveillance tools in an R package, a free statistical programming language available in many public health departments, and this will enable its use by public health practitioners.



Publications

Bayesian prospective detection of small area health anomalies using Kullback-Leibler divergence.
Authors: Rotejanaprasert C. , Lawson A. .
Source: Statistical methods in medical research, 2018 04; 27(4), p. 1076-1087.
EPub date: 2016-07-07.
PMID: 27389668
Related Citations

Spatial Bayesian surveillance for small area case event data.
Authors: Rotejanaprasert C. , Lawson A. , Bolick-Aldrich S. , Hurley D. .
Source: Statistical methods in medical research, 2016 08; 25(4), p. 1101-17.
PMID: 27566768
Related Citations




Back to Top