Grant Details
Grant Number: |
5R01CA140286-05 Interpret this number |
Primary Investigator: |
Vachon, Celine |
Organization: |
Mayo Clinic Rochester |
Project Title: |
Risk Factors for Breast Cancer Molecular Subtypes |
Fiscal Year: |
2014 |
Abstract
Abstract
Recently, gene expression profiling has identified molecular subtypes that classify invasive breast cancers into
distinct categories that vary in their clinical behavior and response to treatment. These subtypes highlight the
many possible biologically and clinically distinct types of breast cancer. With such heterogeneity within breast
cancer, we might expect that risk factors influence specific subtypes of breast cancer through different etiologic
pathways. Mammographic density (MD), the proportion of the white or dense regions on a mammogram, has
been shown to be one of the strongest and most consistent risk factors for breast cancer. We propose a large
collaboration of four established cohort studies [Nurses' Health Study (I and II) Blood Subcohorts, Mayo
Mammography Health Study and San Francisco Mammography Registry/UCSF SPORE] with similar methods
for ascertaining risk factors, MD, breast cancer and breast cancer subtype information, to examine the
association of MD with subtypes of invasive breast cancer. Specifically, we propose Aim 1) To ascertain and
combine clinical risk factor, MD and breast cancer information to create a large nested case-control study of
~3300 women with invasive breast cancer and ~5700 matched controls, Aim 2) To characterize breast cancer
subtypes for all invasive breast cancers using information from pathology reports, cancer registries and
pathologic review. We propose to classify cancers according to hormone receptors (estrogen (ER) and
progesterone (PR)), human epidermal growth factor-2 (HER2) expression, tumor size, nodal involvement,
histologic subtype and grade. Also, using both clinically available information and results from
immunohistochemistry and FISH analyses, we will classify cancers into the 'intrinsic' molecular subtypes
defined as Luminal A, Luminal B, Basal-like, HER2-expressing and Unclassified. Aim 3) To evaluate the
association of MD with each of the histologic and molecular breast cancer subtypes defined in Aim 2, and Aim
4) To combine MD and clinical breast cancer risk factor information to develop a risk prediction model for
breast cancer and the specific breast cancer molecular subtypes. Our secondary aim will examine
associations of novel parenchyma features of digitized mammogram films with breast cancer and histologic
and molecular breast cancer subtypes. Successful completion of this protocol will 1) address the
question whether MD is associated with breast cancer subtypes, 2) result in a new risk prediction
model for breast cancer and molecular subtypes, and 3) establish a large, collaborative nested-case
control study with risk factors, MD, and well-annotated breast cancers that can be used for future
studies. Identifying whether MD is associated with specific subtypes of breast cancer may result in more
targeted prevention and surveillance strategies for women with high MD. Also, risk models for the molecular
subtypes incorporating MD and parenchyma measures will likely be more informative than those treating
breast cancer as one disease.
Publications
None