Skip to main content
Grant Details

Grant Number: 1R01CA169122-01A1 Interpret this number
Primary Investigator: Wei, Peng
Organization: University Of Texas Hlth Sci Ctr Houston
Project Title: Genetic Susceptibility and Risk Model for Pancreatic Cancer
Fiscal Year: 2013
Back to top


DESCRIPTION (provided by applicant): Pancreatic cancer (PanC) is the fourth leading cause of cancer-related death for both men and women in the U.S. Better understanding of the etiology and developing risk prediction models for early detection and prevention are urgently needed for this rapidly fatal disease. The majority of PanC are caused by the interplay of both genetic and environmental factors. Known risk factors for PanC include cigarette smoking, obesity, long-term type II diabetes, and family history. In addition, our previous case-control study has shown that excess body mass index (BMI) in young adulthood confers a higher risk of PanC than weight gain at later age. Recent genome-wide association studies (GWAS) have identified several chromosomal regions and genes in association with risk of PanC (PanScan). Our pathway analyses of the PanScan GWAS data have uncovered several novel biological pathways associated with the risk for PanC. However, it remains unknown how environmental or host risk factors modify the association between genetic factors and the PanC risk, which knowledge is critical to better understanding of the etiology and developing a risk prediction model and early intervention strategies for PanC. The goal of this project is to identify gene-environment interactions and develop and validate a risk prediction model including both common and rare genetic variants using the PanScan GWAS data and the exposure information of over 2,200 case-control pairs and an ongoing ExomeChip-based study of PanC genotyping both common SNPs and >240,000 rare functional exonic variants in over 4,100 cases and 4,700 controls from six case-control studies in the Pancreatic Cancer Case Control Consortium (PanC4) and a nested case-control study from Europe (EPIC). We will validate the absolute risk prediction model in two large prospective cohorts: the Atherosclerosis Risk in Communities (ARIC) cohort of 15,000 individuals and the Kaiser Permanente cohort of 100,000 individuals. We will also develop novel statistical methods to identify genes modifying the association between changing BMI at different age periods and PanC risk using the unique dataset from a case-control study of PanC conducted at MD Anderson Cancer Center. Our proposed project hinges on novel integration of GWAS, ExomeChip, exposure data of a large number of PanC cases and controls, recently developed powerful statistical methods and analysis strategies for detecting genome-wide gene/pathway-environment interactions and polygenic approaches to genetic risk prediction. The work proposed here is expected not only to advance our understanding of the etiology of PanC and delineate how genes and lifestyle or host factors modify the risk of PanC, but also to greatly facilitate identification of high-risk individuals, and thus, contribute to early detection, improved survival and prevention of PanC. The novel statistical methods developed here are also applicable to other cancers and complex disease, and we will develop user-friendly software packages for public use.

Back to top


Genetic polymorphisms associated with pancreatic cancer survival: a genome-wide association study.
Authors: Tang H. , Wei P. , Chang P. , Li Y. , Yan D. , Liu C. , Hassan M. , Li D. .
Source: International Journal Of Cancer, 2017-08-15 00:00:00.0; 141(4), p. 678-686.
EPub date: 2017-05-15 00:00:00.0.
PMID: 28470677
Related Citations

On Robust Association Testing for Quantitative Traits and Rare Variants.
Authors: Wei P. , Cao Y. , Zhang Y. , Xu Z. , Kwak I.Y. , Boerwinkle E. , Pan W. .
Source: G3 (bethesda, Md.), 2016-12-07 00:00:00.0; 6(12), p. 3941-3950.
EPub date: 2016-12-07 00:00:00.0.
PMID: 27678522
Related Citations

Mendelian Randomization Analysis Of A Time-varying Exposure For Binary Disease Outcomes Using Functional Data Analysis Methods
Authors: Cao Y. , Rajan S.S. , Wei P. .
Source: Genetic Epidemiology, 2016 Dec; 40(8), p. 744-755.
PMID: 27813215
Related Citations

A Semiparametric Model For Vqtl Mapping
Authors: Hong C. , Ning Y. , Wei P. , Cao Y. , Chen Y. .
Source: Biometrics, 2016-11-14 00:00:00.0; , .
PMID: 27861717
Related Citations

Identification of an Association of TNFAIP3 Polymorphisms With Matrix Metalloproteinase Expression in Fibroblasts in an Integrative Study of Systemic Sclerosis-Associated Genetic and Environmental Factors.
Authors: Wei P. , Yang Y. , Guo X. , Hei N. , Lai S. , Assassi S. , Liu M. , Tan F. , Zhou X. .
Source: Arthritis & Rheumatology (hoboken, N.j.), 2016 Mar; 68(3), p. 749-60.
PMID: 26474180
Related Citations

Incorporating Encode Information Into Association Analysis Of Whole Genome Sequencing Data
Authors: Kim T. , Wei P. .
Source: Bmc Proceedings, 2016; 10(Suppl 7), p. 257-261.
PMID: 27980646
Related Citations

Genome-wide association study identifies common genetic variants associated with salivary gland carcinoma and its subtypes.
Authors: Xu L. , Tang H. , Chen D.W. , El-Naggar A.K. , Wei P. , Sturgis E.M. .
Source: Cancer, 2015-07-15 00:00:00.0; 121(14), p. 2367-74.
EPub date: 2015-07-15 00:00:00.0.
PMID: 25823930
Related Citations

A Powerful Pathway-Based Adaptive Test for Genetic Association with Common or Rare Variants.
Authors: Pan W. , Kwak I.Y. , Wei P. .
Source: American Journal Of Human Genetics, 2015-07-02 00:00:00.0; 97(1), p. 86-98.
EPub date: 2015-07-02 00:00:00.0.
PMID: 26119817
Related Citations

Testing for polygenic effects in genome-wide association studies.
Authors: Pan W. , Chen Y.M. , Wei P. .
Source: Genetic Epidemiology, 2015 May; 39(4), p. 306-16.
PMID: 25847094
Related Citations

Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.
Authors: Dong C. , Wei P. , Jian X. , Gibbs R. , Boerwinkle E. , Wang K. , Liu X. .
Source: Human Molecular Genetics, 2015-04-15 00:00:00.0; 24(8), p. 2125-37.
EPub date: 2015-04-15 00:00:00.0.
PMID: 25552646
Related Citations

A family-based joint test for mean and variance heterogeneity for quantitative traits.
Authors: Cao Y. , Maxwell T.J. , Wei P. .
Source: Annals Of Human Genetics, 2015 Jan; 79(1), p. 46-56.
PMID: 25393880
Related Citations

Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.
Authors: Xu L. , Tang H. , El-Naggar A.K. , Wei P. , Sturgis E.M. .
Source: Plos One, 2015; 10(6), p. e0128753.
PMID: 26035306
Related Citations

Powerful Tukey's One Degree-of-Freedom Test for Detecting Gene-Gene and Gene-Environment Interactions.
Authors: Wang Y. , Li D. , Wei P. .
Source: Cancer Informatics, 2015; 14(Suppl 2), p. 209-18.
PMID: 26064040
Related Citations

Functional logistic regression approach to detecting gene by longitudinal environmental exposure interaction in a case-control study.
Authors: Wei P. , Tang H. , Li D. .
Source: Genetic Epidemiology, 2014 Nov; 38(7), p. 638-51.
PMID: 25219575
Related Citations

A powerful and adaptive association test for rare variants.
Authors: Pan W. , Kim J. , Zhang Y. , Shen X. , Wei P. .
Source: Genetics, 2014 Aug; 197(4), p. 1081-95.
PMID: 24831820
Related Citations

Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer: a gene- and pathway-based interaction analysis of GWAS data.
Authors: Tang H. , Wei P. , Duell E.J. , Risch H.A. , Olson S.H. , Bueno-de-Mesquita H.B. , Gallinger S. , Holly E.A. , Petersen G. , Bracci P.M. , et al. .
Source: Carcinogenesis, 2014 May; 35(5), p. 1039-45.
PMID: 24419231
Related Citations

Genes-environment interactions in obesity- and diabetes-associated pancreatic cancer: a GWAS data analysis.
Authors: Tang H. , Wei P. , Duell E.J. , Risch H.A. , Olson S.H. , Bueno-de-Mesquita H.B. , Gallinger S. , Holly E.A. , Petersen G.M. , Bracci P.M. , et al. .
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2014 Jan; 23(1), p. 98-106.
PMID: 24136929
Related Citations

A versatile omnibus test for detecting mean and variance heterogeneity.
Authors: Cao Y. , Wei P. , Bailey M. , Kauwe J.S. , Maxwell T.J. , Alzheimer's Disease Neuroimaging Initiative .
Source: Genetic Epidemiology, 2014 Jan; 38(1), p. 51-9.
PMID: 24482837
Related Citations

Back to Top