Grant Details
Grant Number: |
5R01CA160239-03 Interpret this number |
Primary Investigator: |
Inoue, Lurdes |
Organization: |
University Of Washington |
Project Title: |
Modeling Breast Cancer Recurrence Using New Statistical Methods for Semi-Markov P |
Fiscal Year: |
2013 |
Abstract
DESCRIPTION (provided by applicant): Longitudinal studies allow us to investigate the natural history of chronic diseases. For some diseases the evolution of the process is characterized by transitions between a series of health states. For example, in cancer, subjects may transition from a cancer-free state to early stage disease, and subsequently to late stage disease. Semi-Markov processes provide a flexible framework for modeling multi-state disease processes. However, limited estimation methods are available for the application of Semi-Markov processes to the study of multi-state disease. Existing estimation methods require the imposition of numerous assumptions on the process, which may not be biologically plausible for many diseases. The lack of estimation methods is particularly acute for data collected under panel observation. In this proposal we develop flexible and biologically appropriate methods for estimating Semi-Markov processes in longitudinal multi-state disease studies. We propose a class of time transformation functions that allows us to bridge Semi-Markov and Markov processes in order to harness the straightforward estimation methods available for Markov processes. We then propose to use mixture models, coupled with a set of biologically reasonable assumptions, to extend these methods to allow for estimation under panel observation. These methods will be applied to the estimation of breast cancer recurrence rates and rates of second primary breast cancers subsequent to an incident breast cancer. Using 13 years of longitudinal data from the Breast Cancer Surveillance Consortium, we will demonstrate improved performance of our novel methods for estimating transition rates among breast event states relative to Markov process models and proportional hazards survival models.
Publications
Comparative Analysis of Biopsy Upgrading in Four Prostate Cancer Active Surveillance Cohorts.
Authors: Inoue L.Y.T.
, Lin D.W.
, Newcomb L.F.
, Leonardson A.S.
, Ankerst D.
, Gulati R.
, Carter H.B.
, Trock B.J.
, Carroll P.R.
, Cooperberg M.R.
, et al.
.
Source: Annals Of Internal Medicine, 2017-11-28 00:00:00.0; , .
EPub date: 2017-11-28 00:00:00.0.
PMID: 29181514
Related Citations
Using semi-Markov processes to study timeliness and tests used in the diagnostic evaluation of suspected breast cancer.
Authors: Hubbard R.A.
, Lange J.
, Zhang Y.
, Salim B.A.
, Stroud J.R.
, Inoue L.Y.
.
Source: Statistics In Medicine, 2016-11-30 00:00:00.0; 35(27), p. 4980-4993.
EPub date: 2016-11-30 00:00:00.0.
PMID: 27439856
Related Citations
A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data.
Authors: Lange J.M.
, Hubbard R.A.
, Inoue L.Y.
, Minin V.N.
.
Source: Biometrics, 2015 Mar; 71(1), p. 90-101.
PMID: 25319319
Related Citations
Modeling grade progression in an active surveillance study.
Authors: Inoue L.Y.
, Trock B.J.
, Partin A.W.
, Carter H.B.
, Etzioni R.
.
Source: Statistics In Medicine, 2014-03-15 00:00:00.0; 33(6), p. 930-9.
EPub date: 2014-03-15 00:00:00.0.
PMID: 24123208
Related Citations
Fitting and interpreting continuous-time latent Markov models for panel data.
Authors: Lange J.M.
, Minin V.N.
.
Source: Statistics In Medicine, 2013-11-20 00:00:00.0; 32(26), p. 4581-95.
EPub date: 2013-11-20 00:00:00.0.
PMID: 23740756
Related Citations
Nuisance parameter elimination for proportional likelihood ratio models with nonignorable missingness and random truncation.
Authors: Chan K.C.
.
Source: Biometrika, 2013; 100(1), .
PMID: 24179236
Related Citations
Survival analysis without survival data: connecting length-biased and case-control data.
Authors: Chan K.C.
.
Source: Biometrika, 2013; 100(3), .
PMID: 24391222
Related Citations