Grant Details
Grant Number: |
1R01CA164138-01A1 Interpret this number |
Primary Investigator: |
Tavtigian, Sean |
Organization: |
University Of Utah |
Project Title: |
Massively Parallel Sequencing for Familial Colon Cancer Genes |
Fiscal Year: |
2012 |
Abstract
DESCRIPTION (provided by applicant): Colorectal cancer remains one of the most common cancers in the US with 146,970 new diagnoses and 49,920 deaths estimated for 2009 (Jemal 2009). Colon cancer is also one of the most familial of cancers. Individuals with a first-degree relative with colon cancer have a 2- to 3-fold increased risk, and those with more than one first-degree relative with colon cancer or a single first-degree relative affected at age d 50 years have a 3- to 6-fold greater risk than those with no family history. The most prominent high-risk colorectal cancer susceptibility genes, APC, MLH1, MSH2, MSH6, PMS2, and PTEN, were all discovered more than a decade ago. Currently, mutation screening of these genes, plus a short list of additional genes that are responsible for a very small fraction of colorectal cancer, plays
an important role in the clinical management of individuals with a strong family history of the disease or syndromic evidence for the presence of a gene mutation. At the other end of the risk spectrum, genome-wide association studies have identified a number of common alleles with very modest effects on colorectal cancer risk; their clinical utility has yet to be established. However, taken together, the known spectrum of genetic effects only explain about one quarter of the overall familial excess of colorectal cancer. It should be emphasized that, at present, the vast majority of individuals seen at familial cancer clinics are counseled on the basis of their family history alone because they do not have mutations in the known susceptibility genes. Accordingly, the long-term objective of this project is to identify the majority of genes responsible for the unexplained component of inherited colorectal cancer risk. Over the last few years, new DNA sequencing technologies - referred to as "next generation" or "massively parallel" sequencing - have matured rapidly. They are now ripe for application to research questions in genetic susceptibility for which linkage analysis is confounded by extensive genetic heterogeneity. Taking advantage of unparalleled familial cancer genetics resources available through the Utah Population Database, two massively parallel sequencing strategies will be used to pursue the long term objective of this project: 1) candidate genes will be identified by sequencing all of the gene exons in the human genome from a series of colorectal cancer cases who have a very strong family history of colorectal cancer that is not explained by one of the currently known high-risk susceptibility genes; and 2) colorectal cancer susceptibility genes will be validated by case-control re-sequencing of the candidate genes from step #1 in a much larger series of colorectal cancer cases who have family history of colorectal cancer in comparison with a series of cancer-free controls. The multidisciplinary team assembled for this project has access to an unparalleled resource for studying cancer genetics, has statistical and bioinformatic skills required to analyze massive re-sequencing data, and has the ability to translate findings almost directly to clinical cancer genetics. Thus this team and project are poised to take a huge step towards solving the "problem of missing heritability" in colorectal cancer genetics.
PUBLIC HEALTH RELEVANCE: Currently, clinical cancer genetics applied to families with a history of colorectal cancer is only useful to the minority of families in which there is an APC1, mismatch repair gene, BMPR1A, MUTYH, PTEN, SMAD4, or STK11 mutation; unfortunately, mutations in these genes only explain a minority of such families. This project will apply new DNA sequencing technologies to an unparalleled resource of colon cancer cases and families to identify the majority of genes that contribute to familial colon cancer. In the long term, discover of these genes will lead to more effective prevention programs and, potentially, improved treatments.
Publications
BICEP: Bayesian inference for rare genomic variant causality evaluation in pedigrees.
Authors: Ormond C.
, Ryan N.M.
, Cap M.
, Byerley W.
, Corvin A.
, Heron E.A.
.
Source: Briefings In Bioinformatics, 2024-11-22 00:00:00.0; 26(1), .
PMID: 39656772
Related Citations
FANCM c5791C>T stopgain mutation (rs144567652) is a familial colorectal cancer risk factor.
Authors: Cannon-Albright L.A.
, Teerlink C.C.
, Stevens J.
, Snow A.K.
, Thompson B.A.
, Bell R.
, Nguyen K.N.
, Sargent N.R.
, Kohlmann W.K.
, Neklason D.W.
, et al.
.
Source: Molecular Genetics & Genomic Medicine, 2020 Dec; 8(12), p. e1532.
EPub date: 2020-10-29 00:00:00.0.
PMID: 33118316
Related Citations
A novel ribosomal protein S20 variant in a family with unexplained colorectal cancer and polyposis.
Authors: Thompson B.A.
, Snow A.K.
, Koptiuch C.
, Kohlmann W.K.
, Mooney R.
, Johnson S.
, Huff C.D.
, Yu Y.
, Teerlink C.C.
, Feng B.J.
, et al.
.
Source: Clinical Genetics, 2020 Jun; 97(6), p. 943-944.
PMID: 32424863
Related Citations
Predictors of Response Outcomes for Research Recruitment Through a Central Cancer Registry: Evidence From 17 Recruitment Efforts for Population-Based Studies.
Authors: Millar M.M.
, Kinney A.Y.
, Camp N.J.
, Cannon-Albright L.A.
, Hashibe M.
, Penson D.F.
, Kirchhoff A.C.
, Neklason D.W.
, Gilsenan A.W.
, Dieck G.S.
, et al.
.
Source: American Journal Of Epidemiology, 2019-05-01 00:00:00.0; 188(5), p. 928-939.
PMID: 30689685
Related Citations
Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine.
Authors: Valle L.
, Vilar E.
, Tavtigian S.V.
, Stoffel E.M.
.
Source: The Journal Of Pathology, 2019 Apr; 247(5), p. 574-588.
EPub date: 2019-02-20 00:00:00.0.
PMID: 30584801
Related Citations
Pancreatic cancer as a sentinel for hereditary cancer predisposition.
Authors: Young E.L.
, Thompson B.A.
, Neklason D.W.
, Firpo M.A.
, Werner T.
, Bell R.
, Berger J.
, Fraser A.
, Gammon A.
, Koptiuch C.
, et al.
.
Source: Bmc Cancer, 2018-06-27 00:00:00.0; 18(1), p. 697.
EPub date: 2018-06-27 00:00:00.0.
PMID: 29945567
Related Citations
20th Workshop of the International Stroke Genetics Consortium, November 3-4, 2016, Milan, Italy: 2016.036 ISGC research priorities.
Authors: Woo D.
, Debette S.
, Anderson C.
.
Source: Neurology. Genetics, 2017 Mar; 3(1 Suppl 1), p. S12-S18.
EPub date: 2017-03-30 00:00:00.0.
PMID: 28428978
Related Citations
Perch: A Unified Framework For Disease Gene Prioritization
Authors: Feng B.J.
.
Source: Human Mutation, 2016-12-19 00:00:00.0; , .
PMID: 27995669
Related Citations
Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants.
Authors: Vallée M.P.
, Di Sera T.L.
, Nix D.A.
, Paquette A.M.
, Parsons M.T.
, Bell R.
, Hoffman A.
, Hogervorst F.B.
, Goldgar D.E.
, Spurdle A.B.
, et al.
.
Source: Human Mutation, 2016 Jul; 37(7), p. 627-39.
PMID: 26913838
Related Citations
Evidence for a heritable contribution to neuroendocrine tumors of the small intestine.
Authors: Neklason D.W.
, VanDerslice J.
, Curtin K.
, Cannon-Albright L.A.
.
Source: Endocrine-related Cancer, 2016 Feb; 23(2), p. 93-100.
PMID: 26604321
Related Citations
A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data.
Authors: Hu H.
, Roach J.C.
, Coon H.
, Guthery S.L.
, Voelkerding K.V.
, Margraf R.L.
, Durtschi J.D.
, Tavtigian S.V.
, Shankaracharya null
, Wu W.
, et al.
.
Source: Nature Biotechnology, 2014 Jul; 32(7), p. 663-9.
PMID: 24837662
Related Citations
VAAST 2.0: improved variant classification and disease-gene identification using a conservation-controlled amino acid substitution matrix.
Authors: Hu H.
, Huff C.D.
, Moore B.
, Flygare S.
, Reese M.G.
, Yandell M.
.
Source: Genetic Epidemiology, 2013 Sep; 37(6), p. 622-34.
PMID: 23836555
Related Citations