Grant Details
Grant Number: |
1R01CA157881-01A1 Interpret this number |
Primary Investigator: |
Wang, Liang |
Organization: |
Mayo Clinic Rochester |
Project Title: |
Genetic Determinants of Gene Expression Phenotypes in Aggressive Prostate Cancer |
Fiscal Year: |
2011 |
Abstract
DESCRIPTION (provided by applicant):
The regulatory variation is believed to play an important role in shaping phenotypic differences among individuals and thus is also very likely to influence disease susceptibility and progression. In this study, we propose to take advantage of the expression QTL mapping and co-expressed gene network analysis to identify and characterize candidate genes and genetic variants that are responsible for aggressive phenotype of prostate cancer. Our hypothesis is that most genetic variants responsible for an aggressive phenotype of prostate cancer have regulatory effect on candidate gene expression and complete understanding of regulatory SNPs can only be achieved by examining primary tissue (here, prostate). To test this hypothesis, we will use a case-case study design and apply an innovative yet feasible approach by integrating DNA sequence variation and gene expression with clinical trait information. The four Specific Aims are: 1. Identify novel aggressiveness-related candidate SNPs by utilizing an expression genetics-based eQTL mapping approach; 2, Identify novel aggressiveness-related candidate SNPs by utilizing an integrative systems genetics-based network analysis approach; 3. For the novel candidate SNPs identified in Aims 1 and 2, perform additional association-based studies to confirm their association with an aggressiveness-related phenotype for prostate cancer; and 4. Identify candidate causal-SNPs by fine mapping, recognizing that the candidate eSNPs identified in Aim 3 will most likely be in linkage disequilibrium with the causal-SNPs. Understanding genetic mechanisms underlying the aggressive phenotype will have significant impact on prevention strategies, prognosis and potentially targeted therapy.
PUBLIC HEALTH RELEVANCE:
Prostate cancer can be relatively harmless or extremely aggressive. The goal of this study is to identify and characterize genetic causes of the aggressive (clinically more significant) form of prostate cancer. An understanding the genetic mechanism underlying the aggressive disease will have a significant impact on prevention strategies, prognosis and potentially targeted therapy.
Publications
Extensive germline-somatic interplay contributes to prostate cancer progression through HNF1B co-option of TMPRSS2-ERG.
Authors: Giannareas N.
, Zhang Q.
, Yang X.
, Na R.
, Tian Y.
, Yang Y.
, Ruan X.
, Huang D.
, Yang X.
, Wang C.
, et al.
.
Source: Nature Communications, 2022-11-28 00:00:00.0; 13(1), p. 7320.
EPub date: 2022-11-28 00:00:00.0.
PMID: 36443337
Related Citations
A microRNA Transcriptome-wide Association Study of Prostate Cancer Risk.
Authors: Larson N.B.
, McDonnell S.K.
, Fogarty Z.
, Liu Y.
, French A.J.
, Tillmans L.S.
, Cheville J.C.
, Wang L.
, Schaid D.J.
, Thibodeau S.N.
.
Source: Frontiers In Genetics, 2022; 13, p. 836841.
EPub date: 2022-03-30 00:00:00.0.
PMID: 35432445
Related Citations
A microRNA Transcriptome-wide Association Study of Prostate Cancer Risk.
Authors: Larson N.B.
, McDonnell S.K.
, Fogarty Z.
, Liu Y.
, French A.J.
, Tillmans L.S.
, Cheville J.C.
, Wang L.
, Schaid D.J.
, Thibodeau S.N.
.
Source: Frontiers In Genetics, 2022; 13, p. 836841.
EPub date: 2022-03-30 00:00:00.0.
PMID: 35432445
Related Citations
Single-nucleotide polymorphism rs13426236 contributes to an increased prostate cancer risk via regulating MLPH splicing variant 4.
Authors: Xiao F.
, Zhang P.
, Wang Y.
, Tian Y.
, James M.
, Huang C.C.
, Wang L.
, Wang L.
.
Source: Molecular Carcinogenesis, 2019-10-29 00:00:00.0; , .
EPub date: 2019-10-29 00:00:00.0.
PMID: 31659808
Related Citations
Single-Nucleotide Polymorphisms Sequencing Identifies Candidate Functional Variants at Prostate Cancer Risk Loci.
Authors: Zhang P.
, Tillmans L.S.
, Thibodeau S.N.
, Wang L.
.
Source: Genes, 2019-07-18 00:00:00.0; 10(7), .
EPub date: 2019-07-18 00:00:00.0.
PMID: 31323811
Related Citations
An expanded variant list and assembly annotation identifies multiple novel coding and noncoding genes for prostate cancer risk using a normal prostate tissue eQTL data set.
Authors: DeRycke M.S.
, Larson M.C.
, Nair A.A.
, McDonnell S.K.
, French A.J.
, Tillmans L.S.
, Riska S.M.
, Baheti S.
, Fogarty Z.C.
, Larson N.B.
, et al.
.
Source: Plos One, 2019; 14(4), p. e0214588.
EPub date: 2019-04-08 00:00:00.0.
PMID: 30958860
Related Citations
Predisposes to Aggressive Prostate Cancer.
Authors: Sipeky C.
, Gao P.
, Zhang Q.
, Wang L.
, Ettala O.
, Talala K.M.
, Tammela T.L.J.
, Auvinen A.
, Wiklund F.
, Wei G.H.
, et al.
.
Source: Clinical Cancer Research : An Official Journal Of The American Association For Cancer Research, 2018-09-04 00:00:00.0; , .
EPub date: 2018-09-04 00:00:00.0.
PMID: 30181389
Related Citations
Prognostic association of plasma cell-free DNA-based androgen receptor amplification and circulating tumor cells in pre-chemotherapy metastatic castration-resistant prostate cancer patients.
Authors: Kohli M.
, Li J.
, Du M.
, Hillman D.W.
, Dehm S.M.
, Tan W.
, Carlson R.
, Campion M.B.
, Wang L.
, Wang L.
, et al.
.
Source: Prostate Cancer And Prostatic Diseases, 2018 Sep; 21(3), p. 411-418.
EPub date: 2018-06-01 00:00:00.0.
PMID: 29858592
Related Citations
Biology and Clinical Implications of the 19q13 Aggressive Prostate Cancer Susceptibility Locus.
Authors: Gao P.
, Xia J.H.
, Sipeky C.
, Dong X.M.
, Zhang Q.
, Yang Y.
, Zhang P.
, Cruz S.P.
, Zhang K.
, Zhu J.
, et al.
.
Source: Cell, 2018-07-26 00:00:00.0; 174(3), p. 576-589.e18.
EPub date: 2018-07-19 00:00:00.0.
PMID: 30033361
Related Citations
High-throughput screening of prostate cancer risk loci by single nucleotide polymorphisms sequencing.
Authors: Zhang P.
, Xia J.H.
, Zhu J.
, Gao P.
, Tian Y.J.
, Du M.
, Guo Y.C.
, Suleman S.
, Zhang Q.
, Kohli M.
, et al.
.
Source: Nature Communications, 2018-05-22 00:00:00.0; 9(1), p. 2022.
EPub date: 2018-05-22 00:00:00.0.
PMID: 29789573
Related Citations
Network-directed cis-mediator analysis of normal prostate tissue expression profiles reveals downstream regulatory associations of prostate cancer susceptibility loci.
Authors: Larson N.B.
, McDonnell S.K.
, Fogarty Z.
, Larson M.C.
, Cheville J.
, Riska S.
, Baheti S.
, Weber A.M.
, Nair A.A.
, Wang L.
, et al.
.
Source: Oncotarget, 2017-10-17 00:00:00.0; 8(49), p. 85896-85908.
EPub date: 2017-09-08 00:00:00.0.
PMID: 29156765
Related Citations
Molecular characterization of cell-free eccDNAs in human plasma.
Authors: Zhu J.
, Zhang F.
, Du M.
, Zhang P.
, Fu S.
, Wang L.
.
Source: Scientific Reports, 2017-09-08 00:00:00.0; 7(1), p. 10968.
EPub date: 2017-09-08 00:00:00.0.
PMID: 28887493
Related Citations
Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer.
Authors: Du M.
, Giridhar K.V.
, Tian Y.
, Tschannen M.R.
, Zhu J.
, Huang C.C.
, Kilari D.
, Kohli M.
, Wang L.
.
Source: Oncotarget, 2017-09-08 00:00:00.0; 8(38), p. 63703-63714.
EPub date: 2017-07-22 00:00:00.0.
PMID: 28969022
Related Citations
3c-digital Pcr For Quantification Of Chromatin Interactions
Authors: Du M.
, Wang L.
.
Source: Bmc Molecular Biology, 2016-12-06 00:00:00.0; 17(1), p. 23.
PMID: 27923366
Related Citations
Mapping Complex Traits In A Diversity Outbred F1 Mouse Population Identifies Germline Modifiers Of Metastasis In Human Prostate Cancer
Authors: Winter J.M.
, Gildea D.E.
, Andreas J.P.
, Gatti D.M.
, Williams K.A.
, Lee M.
, Hu Y.
, Zhang S.
, NISC Comparative Sequencing Program
, Mullikin J.C.
, et al.
.
Source: Cell Systems, 2016-11-25 00:00:00.0; , .
PMID: 27916600
Related Citations
Mir-375 Induces Docetaxel Resistance In Prostate Cancer By Targeting Sec23a And Yap1
Authors: Wang Y.
, Lieberman R.
, Pan J.
, Zhang Q.
, Du M.
, Zhang P.
, Nevalainen M.
, Kohli M.
, Shenoy N.K.
, Meng H.
, et al.
.
Source: Molecular Cancer, 2016-11-10 00:00:00.0; 15(1), p. 70.
PMID: 27832783
Related Citations
Copy Number Variations In Urine Cell Free Dna As Biomarkers In Advanced Prostate Cancer
Authors: Xia Y.
, Huang C.C.
, Dittmar R.
, Du M.
, Wang Y.
, Liu H.
, Shenoy N.
, Wang L.
, Kohli M.
.
Source: Oncotarget, 2016-06-14 00:00:00.0; 7(24), p. 35818-35831.
PMID: 27127882
Related Citations
Chromatin interactions and candidate genes at ten prostate cancer risk loci.
Authors: Du M.
, Tillmans L.
, Gao J.
, Gao P.
, Yuan T.
, Dittmar R.L.
, Song W.
, Yang Y.
, Sahr N.
, Wang T.
, et al.
.
Source: Scientific Reports, 2016-03-16 00:00:00.0; 6, p. 23202.
EPub date: 2016-03-16 00:00:00.0.
PMID: 26979803
Related Citations
Plasma extracellular RNA profiles in healthy and cancer patients.
Authors: Yuan T.
, Huang X.
, Woodcock M.
, Du M.
, Dittmar R.
, Wang Y.
, Tsai S.
, Kohli M.
, Boardman L.
, Patel T.
, et al.
.
Source: Scientific Reports, 2016-01-20 00:00:00.0; 6, p. 19413.
EPub date: 2016-01-20 00:00:00.0.
PMID: 26786760
Related Citations
Identification of candidate genes for prostate cancer-risk SNPs utilizing a normal prostate tissue eQTL data set.
Authors: Thibodeau S.N.
, French A.J.
, McDonnell S.K.
, Cheville J.
, Middha S.
, Tillmans L.
, Riska S.
, Baheti S.
, Larson M.C.
, Fogarty Z.
, et al.
.
Source: Nature Communications, 2015-11-27 00:00:00.0; 6, p. 8653.
EPub date: 2015-11-27 00:00:00.0.
PMID: 26611117
Related Citations
A large multiethnic genome-wide association study of prostate cancer identifies novel risk variants and substantial ethnic differences.
Authors: Hoffmann T.J.
, Van Den Eeden S.K.
, Sakoda L.C.
, Jorgenson E.
, Habel L.A.
, Graff R.E.
, Passarelli M.N.
, Cario C.L.
, Emami N.C.
, Chao C.R.
, et al.
.
Source: Cancer Discovery, 2015 Aug; 5(8), p. 878-91.
PMID: 26034056
Related Citations
Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer.
Authors: Xia S.
, Kohli M.
, Du M.
, Dittmar R.L.
, Lee A.
, Nandy D.
, Yuan T.
, Guo Y.
, Wang Y.
, Tschannen M.R.
, et al.
.
Source: Oncotarget, 2015-06-30 00:00:00.0; 6(18), p. 16411-21.
PMID: 25915538
Related Citations
Comprehensively evaluating cis-regulatory variation in the human prostate transcriptome by using gene-level allele-specific expression.
Authors: Larson N.B.
, McDonnell S.
, French A.J.
, Fogarty Z.
, Cheville J.
, Middha S.
, Riska S.
, Baheti S.
, Nair A.A.
, Wang L.
, et al.
.
Source: American Journal Of Human Genetics, 2015-06-04 00:00:00.0; 96(6), p. 869-82.
EPub date: 2015-06-04 00:00:00.0.
PMID: 25983244
Related Citations
Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer.
Authors: Huang X.
, Yuan T.
, Liang M.
, Du M.
, Xia S.
, Dittmar R.
, Wang D.
, See W.
, Costello B.A.
, Quevedo F.
, et al.
.
Source: European Urology, 2015 Jan; 67(1), p. 33-41.
PMID: 25129854
Related Citations
Prostate cancer risk locus at 8q24 as a regulatory hub by physical interactions with multiple genomic loci across the genome.
Authors: Du M.
, Yuan T.
, Schilter K.F.
, Dittmar R.L.
, Mackinnon A.
, Huang X.
, Tschannen M.
, Worthey E.
, Jacob H.
, Xia S.
, et al.
.
Source: Human Molecular Genetics, 2015-01-01 00:00:00.0; 24(1), p. 154-66.
EPub date: 2015-01-01 00:00:00.0.
PMID: 25149474
Related Citations
eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing.
Authors: Yuan T.
, Huang X.
, Dittmar R.L.
, Du M.
, Kohli M.
, Boardman L.
, Thibodeau S.N.
, Wang L.
.
Source: Bmc Genomics, 2014-03-05 00:00:00.0; 15, p. 176.
EPub date: 2014-03-05 00:00:00.0.
PMID: 24593312
Related Citations
Extracellular microRNAs in urologic malignancies: chances and challenges.
Authors: Huang X.
, Liang M.
, Dittmar R.
, Wang L.
.
Source: International Journal Of Molecular Sciences, 2013-07-16 00:00:00.0; 14(7), p. 14785-99.
EPub date: 2013-07-16 00:00:00.0.
PMID: 23863690
Related Citations