Skip to main content

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at opm.gov.

An official website of the United States government
Grant Details

Grant Number: 5R01CA107304-07 Interpret this number
Primary Investigator: Morris, Jeffrey
Organization: University Of Tx Md Anderson Can Ctr
Project Title: Adaptive Methodology for Functional Biomedical Data
Fiscal Year: 2011


Abstract

DESCRIPTION (provided by applicant): An ever-increasing number of biomedical studies yield functional data sampled on a fine grid. These type of data are frequently high dimensional and complex with many irregular features like peaks and change points. There is currently a dearth of existing rigorous statistical methods for analyzing this type of data. The goal of this research program is to develop new Bayesian methodology that provides a unified framework for modeling and performing inference on samples of curves that is flexible enough to apply to a variety of applications, from various experimental designs, and can answer a broad range of research questions. 1. We will develop new methodology within the wavelet-based functional mixed model framework that accommodates outlying curves, a broader class of within- curve covariance structures, and higher dimensional functional data, making it applicable to a broad range of functional data. 2. We will develop methods to classify individuals based on their functional data, e.g. proteomic profiles, in a way that allows us to combine information across functional and scalar factors of multiple sources. We will develop methods to perform Bayesian functional hypothesis testing. 3. We will develop adaptive methods for relating functional predictors to functional responses. 4. We will develop methods for adaptive functional principal components analysis and for principal component-based functional mixed models, which represents a data-driven modeling framework that is extremely flexible in taking into account the complex structure that may be present in the functional data. 5. We will apply the methods to a number of cancer-related studies yielding functional data, including various types of proteomics and genomics data. 6. We will develop efficient, easy-to-use, freely available code to fit the methods described in this proposal.



Publications

Error Notice

The database may currently be offline for maintenance and should be operational soon. If not, we have been notified of this error and will be reviewing it shortly.

We apologize for the inconvenience.
- The DCCPS Team.

Back to Top