Skip to main content
Grant Details

Grant Number: 5R01CA112517-05 Interpret this number
Primary Investigator: Isaacs, William
Organization: Johns Hopkins University
Project Title: Genetic Susceptibility for Prostate Cancer Progression
Fiscal Year: 2009
Back to top


Abstract

DESCRIPTION (provided by applicant): Of the 220,900 men estimated to be diagnosed with prostate cancer in 2004 in the U.S; about one half will undergo radical prostatectomy (RP) for treatment of their disease. As many as 25% or more men who undergo this treatment will experience a re-elevation in their serum Prostate Specific Antigen (PSA) level within months to years later. This rise in PSA after prostatectomy, termed biochemical recurrence or failure, is a clear indication of the proliferation of prostate cancer cells which escaped (metastasized) prior to prostatectomy. Statistically, more than one-third of men with biochemical recurrence develop clinically detectable metastatic disease (Pound 1999). This non-curable, lethal stage of prostate cancer claims over 29,000 lives in the U.S. annually. Clinicians are unable to predict with certainty which men are likely to fail therapy and subsequently develop metastatic disease and which are not. We hypothesize that the likelihood of disease recurrence after treatment of prostate cancer by RP is modified and/or determined by sequence variation in genes that regulate prostate cancer metastasis. Restating this hypothesis, genetic background is a determinant of metastatic potential. The Specific Aims of this application are: 1) Explore the association between genetic variants in metastasis-related genes and disease progression in a case-control population of men who have undergone radical prostatectomy for treatment of clinically localized prostate cancer; cases are men whose disease progressed after surgical therapy, and controls are men whose disease did not progress; 2) For genes demonstrating association with progression in Specific Aim 1, confirm the association in a second, similar case-control population; 3) For genes associated in both populations, perform fine-mapping association tests, and assess association in non-European Americans cases; 4) Assess genotype - phenotype correlation for progression associated genes. We anticipate that this study will provide novel insights into the mechanisms responsible for prostate cancer progression, and provide a basis for the identification of men at elevated risk for this life threatening event.

Back to top


Publications

Variation in IL10 and other genes involved in the immune response and in oxidation and prostate cancer recurrence.
Authors: Dluzniewski P.J. , Wang M.H. , Zheng S.L. , De Marzo A.M. , Drake C.G. , Fedor H.L. , Partin A.W. , Han M. , Fallin M.D. , Xu J. , et al. .
Source: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2012 Oct; 21(10), p. 1774-82.
EPub date: 2012-08-02.
PMID: 22859398
Related Citations

Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer.
Authors: Liu W. , Lindberg J. , Sui G. , Luo J. , Egevad L. , Li T. , Xie C. , Wan M. , Kim S.T. , Wang Z. , et al. .
Source: Oncogene, 2012-08-30; 31(35), p. 3939-48.
EPub date: 2011-12-05.
PMID: 22139082
Related Citations

Inherited susceptibility for aggressive prostate cancer.
Authors: Isaacs W.B. .
Source: Asian journal of andrology, 2012 May; 14(3), p. 415-8.
EPub date: 2012-04-30.
PMID: 22543676
Related Citations

Pathway-based analysis of genetic susceptibility to cervical cancer in situ: HLA-DPB1 affects risk in Swedish women.
Authors: Ivansson E.L. , Juko-Pecirep I. , Erlich H.A. , Gyllensten U.B. .
Source: Genes and immunity, 2011 Dec; 12(8), p. 605-14.
EPub date: 2011-06-30.
PMID: 21716314
Related Citations

Genome-wide association study identifies new prostate cancer susceptibility loci.
Authors: Schumacher F.R. , Berndt S.I. , Siddiq A. , Jacobs K.B. , Wang Z. , Lindstrom S. , Stevens V.L. , Chen C. , Mondul A.M. , Travis R.C. , et al. .
Source: Human molecular genetics, 2011-10-01; 20(19), p. 3867-75.
EPub date: 2011-07-08.
PMID: 21743057
Related Citations

Comparison of two methods for estimating absolute risk of prostate cancer based on single nucleotide polymorphisms and family history.
Authors: Hsu F.C. , Sun J. , Zhu Y. , Kim S.T. , Jin T. , Zhang Z. , Wiklund F. , Kader A.K. , Zheng S.L. , Isaacs W. , et al. .
Source: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2010 Apr; 19(4), p. 1083-8.
EPub date: 2010-03-23.
PMID: 20332264
Related Citations

Inherited genetic variant predisposes to aggressive but not indolent prostate cancer.
Authors: Xu J. , Zheng S.L. , Isaacs S.D. , Wiley K.E. , Wiklund F. , Sun J. , Kader A.K. , Li G. , Purcell L.D. , Kim S.T. , et al. .
Source: Proceedings of the National Academy of Sciences of the United States of America, 2010-02-02; 107(5), p. 2136-40.
EPub date: 2010-01-11.
PMID: 20080650
Related Citations

Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients.
Authors: Kader A.K. , Sun J. , Isaacs S.D. , Wiley K.E. , Yan G. , Kim S.T. , Fedor H. , DeMarzo A.M. , Epstein J.I. , Walsh P.C. , et al. .
Source: The Prostate, 2009-08-01; 69(11), p. 1195-205.
PMID: 19434657
Related Citations

Fine-mapping and family-based association analyses of prostate cancer risk variants at Xp11.
Authors: Lu L. , Sun J. , Isaacs S.D. , Wiley K.E. , Smith S. , Pruett K. , Zhu Y. , Zhang Z. , Wiklund F. , Grönberg H. , et al. .
Source: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2009 Jul; 18(7), p. 2132-6.
EPub date: 2009-06-23.
PMID: 19549809
Related Citations

Prostate cancer risk associated loci in African Americans.
Authors: Xu J. , Kibel A.S. , Hu J.J. , Turner A.R. , Pruett K. , Zheng S.L. , Sun J. , Isaacs S.D. , Wiley K.E. , Kim S.T. , et al. .
Source: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2009 Jul; 18(7), p. 2145-9.
EPub date: 2009-06-23.
PMID: 19549807
Related Citations

Two independent prostate cancer risk-associated Loci at 11q13.
Authors: Zheng S.L. , Stevens V.L. , Wiklund F. , Isaacs S.D. , Sun J. , Smith S. , Pruett K. , Wiley K.E. , Kim S.T. , Zhu Y. , et al. .
Source: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2009 Jun; 18(6), p. 1815-20.
PMID: 19505914
Related Citations

A novel prostate cancer susceptibility locus at 19q13.
Authors: Hsu F.C. , Sun J. , Wiklund F. , Isaacs S.D. , Wiley K.E. , Purcell L.D. , Gao Z. , Stattin P. , Zhu Y. , Kim S.T. , et al. .
Source: Cancer research, 2009-04-01; 69(7), p. 2720-3.
EPub date: 2009-03-24.
PMID: 19318570
Related Citations

Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk.
Authors: Chang B.L. , Cramer S.D. , Wiklund F. , Isaacs S.D. , Stevens V.L. , Sun J. , Smith S. , Pruett K. , Romero L.M. , Wiley K.E. , et al. .
Source: Human molecular genetics, 2009-04-01; 18(7), p. 1368-75.
EPub date: 2009-01-19.
PMID: 19153072
Related Citations

Association of a germ-line copy number variation at 2p24.3 and risk for aggressive prostate cancer.
Authors: Liu W. , Sun J. , Li G. , Zhu Y. , Zhang S. , Kim S.T. , Sun J. , Wiklund F. , Wiley K. , Isaacs S.D. , et al. .
Source: Cancer research, 2009-03-15; 69(6), p. 2176-9.
EPub date: 2009-03-03.
PMID: 19258504
Related Citations

Sequence variants at 22q13 are associated with prostate cancer risk.
Authors: Sun J. , Zheng S.L. , Wiklund F. , Isaacs S.D. , Li G. , Wiley K.E. , Kim S.T. , Zhu Y. , Zhang Z. , Hsu F.C. , et al. .
Source: Cancer research, 2009-01-01; 69(1), p. 10-5.
PMID: 19117981
Related Citations

Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12.
Authors: Sun J. , Zheng S.L. , Wiklund F. , Isaacs S.D. , Purcell L.D. , Gao Z. , Hsu F.C. , Kim S.T. , Liu W. , Zhu Y. , et al. .
Source: Nature genetics, 2008 Oct; 40(10), p. 1153-5.
EPub date: 2008-08-31.
PMID: 18758462
Related Citations

Association of prostate cancer risk variants with clinicopathologic characteristics of the disease.
Authors: Xu J. , Isaacs S.D. , Sun J. , Li G. , Wiley K.E. , Zhu Y. , Hsu F.C. , Wiklund F. , Turner A.R. , Adams T.S. , et al. .
Source: Clinical cancer research : an official journal of the American Association for Cancer Research, 2008-09-15; 14(18), p. 5819-24.
PMID: 18794092
Related Citations

Family-based samples can play an important role in genetic association studies.
Authors: Lange E.M. , Sun J. , Lange L.A. , Zheng S.L. , Duggan D. , Carpten J.D. , Gronberg H. , Isaacs W.B. , Xu J. , Chang B.L. .
Source: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2008 Sep; 17(9), p. 2208-14.
PMID: 18768484
Related Citations

Cumulative effect of five genetic variants on prostate cancer risk in multiple study populations.
Authors: Sun J. , Chang B.L. , Isaacs S.D. , Wiley K.E. , Wiklund F. , Stattin P. , Duggan D. , Carpten J.D. , Trock B.J. , Partin A.W. , et al. .
Source: The Prostate, 2008-09-01; 68(12), p. 1257-62.
PMID: 18491292
Related Citations

Association between sequence variants at 17q12 and 17q24.3 and prostate cancer risk in European and African Americans.
Authors: Sun J. , Purcell L. , Gao Z. , Isaacs S.D. , Wiley K.E. , Hsu F.C. , Liu W. , Duggan D. , Carpten J.D. , Grönberg H. , et al. .
Source: The Prostate, 2008-05-15; 68(7), p. 691-7.
PMID: 18361410
Related Citations

Chromosome 8q24 risk variants in hereditary and non-hereditary prostate cancer patients.
Authors: Sun J. , Lange E.M. , Isaacs S.D. , Liu W. , Wiley K.E. , Lange L. , Gronberg H. , Duggan D. , Carpten J.D. , Walsh P.C. , et al. .
Source: The Prostate, 2008-04-01; 68(5), p. 489-97.
PMID: 18213635
Related Citations

Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer.
Authors: Gudmundsson J. , Sulem P. , Rafnar T. , Bergthorsson J.T. , Manolescu A. , Gudbjartsson D. , Agnarsson B.A. , Sigurdsson A. , Benediktsdottir K.R. , Blondal T. , et al. .
Source: Nature genetics, 2008 Mar; 40(3), p. 281-3.
EPub date: 2008-02-10.
PMID: 18264098
Related Citations

Cumulative association of five genetic variants with prostate cancer.
Authors: Zheng S.L. , Sun J. , Wiklund F. , Smith S. , Stattin P. , Li G. , Adami H.O. , Hsu F.C. , Zhu Y. , Bälter K. , et al. .
Source: The New England journal of medicine, 2008-02-28; 358(9), p. 910-9.
EPub date: 2008-01-16.
PMID: 18199855
Related Citations

Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP.
Authors: Duggan D. , Zheng S.L. , Knowlton M. , Benitez D. , Dimitrov L. , Wiklund F. , Robbins C. , Isaacs S.D. , Cheng Y. , Li G. , et al. .
Source: Journal of the National Cancer Institute, 2007-12-19; 99(24), p. 1836-44.
EPub date: 2007-12-11.
PMID: 18073375
Related Citations

Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans.
Authors: Zheng S.L. , Sun J. , Cheng Y. , Li G. , Hsu F.C. , Zhu Y. , Chang B.L. , Liu W. , Kim J.W. , Turner A.R. , et al. .
Source: Journal of the National Cancer Institute, 2007-10-17; 99(20), p. 1525-33.
EPub date: 2007-10-09.
PMID: 17925536
Related Citations




Back to Top