Skip to main content

Because of a lapse in government funding, the information on this website may not be up to date, transactions submitted via the website may not be processed, and the agency may not be able to respond to inquiries until appropriations are enacted.

The NIH Clinical Center (the research hospital of NIH) is open. For more details about its operating status, please visit cc.nih.gov.

Updates regarding government operating status and resumption of normal operations can be found at opm.gov.

An official website of the United States government
Grant Details

Grant Number: 2R01CA082354-09A2 Interpret this number
Primary Investigator: Nelson, Heather
Organization: University Of Minnesota
Project Title: Molecular Epidemiology of Non-Melanoma Skin Cancer
Fiscal Year: 2009


Abstract

DESCRIPTION (provided by applicant): Non-melanoma skin cancers (NMSC) are the most prevalent malignancies among Caucasians. Further, skin cancer is a model system for understanding carcinogenesis and genetic susceptibility to environmentally-induced cancers. Our prior work on genetic susceptibility has focused on mutagenicity pathways, testing hypotheses regarding polymorphisms in DNA repair genes and genes in oxidative stress detoxification. Moving forward, we will continue to build on the tremendous existing resource of a large population-based case control study in New Hampshire (approximately 1500 basal cell carcinoma (BCC), 1200 squamous cell carcinoma (SCC) and 1400 controls, principal investigator: Karagas, CA57494). In this new grant period we will shift our focus to alternative pathways of susceptibility in NMSC, focusing on the role of immune signaling. Ultraviolet radiation (UV) is well documented to induce local and systemic immunosuppression. We will address genetic susceptibility to NMSC targeting immune signaling and inflammation pathways. These findings will be directly translatable to other cancers and disease processes. This application aims to identify genetic variation in immune signaling pathways that enhances susceptibility to skin cancer. Identified genes would be useful in understanding skin cancer prevention, as well as other diseases with a strong immune component (i.e. autoimmune disease and vaccine efficiency). PUBLIC HEALTH RELEVANCE: Ultraviolet radiation (UV) is well documented to induce local and systemic immunosuppression. This application aims to identify genetic variation in immune signaling pathways that enhances susceptibility to skin cancer. Identified genes would be useful in understanding skin cancer prevention, as well as other diseases with a strong immune component



Publications


None

Back to Top