Grant Details
Grant Number: |
1R01CA129684-01A1 Interpret this number |
Primary Investigator: |
Xu, Jianfeng |
Organization: |
Wake Forest University Health Sciences |
Project Title: |
Confirmation of Snps Associated with Aggressive PCA in a GWA Study |
Fiscal Year: |
2008 |
Abstract
DESCRIPTION (provided by applicant): Title: Confirmation of SNPs Associated with Aggressive PCa in a GWA study A genetic predisposition to prostate cancer (PCa) is well established and is the strongest among all common cancers. Inherited sequence variants in a number of genes, each conferring a moderate risk, are believed to collectively underlie the genetic predisposition. To systematically identify these risk variants, we have initiated an ambitious genome-wide association (GWA) study that includes several large and well characterized study populations in Sweden and Johns Hopkins Hospital, totaling > 10,000 cases and controls. Thus far, we have completed the 1st stage of this proposed GWA by studying 550K SNPs, including 20K nonsynonymous SNPs, among 500 aggressive cases and 500 controls from a Swedish population (CAPS). To further improve the power of identifying moderate risk SNPs, we propose a study to considerably increase the sample size for a GWA and systematically follow-up a large number of SNPs among independent study populations. We propose four specific aims to test the hypothesis that inherited sequence variants in the genome may increase or modify PCa risk. Aim 1) As the 2nd stage, we will genotype 500K SNPs and a subset of 50K supplement SNPs among an additional 800 aggressive PCa cases and 800 controls from Sweden. A joint association analysis among subjects in stages 1 & 2 will be performed to select SNPs for further confirmation. Aim 2) As the 3rd stage, we will test for PCa associations for the ~6,500 SNPs among an additional 2,000 aggressive PCa cases and 1,000 controls from Johns Hopkins Hospital. A combined analysis will be performed for these SNPs among all available subjects to identify SNPs that reach genome-wide significance level. Aim 3) Perform a fine mapping analysis at genomic regions surrounding the genome-wide significant SNPs to identify variants that are most strongly associated with PCa risk among all 3,300 aggressive PCa cases and 2,300 controls. Aim 4) Assess association of the PCa risk variants with the disease progression among 5,000 cases with extensive follow-up information from a Swedish Nationwide Follow-Up study of Localized PCa (FU-study) and 500 matched-pairs of progressors and non-progressors from Johns Hopkins Hospital. The identification of PCa risk variants may impact the understanding, prevention, diagnosis, and treatment of this disease. PUBLIC HEALTH RELEVANCE: We propose to identify inherited sequence variants in the genome that confer moderate risk to prostate cancer (PCa) using a genome-wide association (GWA) study among more than 10,000 subjects from multiple study populations. The identified genes may advance our understanding on the etiology of PCa and could be used to better predict the risk for developing PCa. The focus on aggressive PCa is particularly important because this is the most clinically relevant form of PCa.
Publications
The Xu's chart for prostate biopsy: a visual presentation of the added value of biomarkers to prostate-specific antigen for estimating detection rates of prostate cancer.
Authors: Xu J.
.
Source: Asian Journal Of Andrology, 2014 Jul-Aug; 16(4), p. 536-40.
PMID: 24625885
Related Citations
Plateau effect of prostate cancer risk-associated SNPs in discriminating prostate biopsy outcomes.
Authors: Ren S.
, Xu J.
, Zhou T.
, Jiang H.
, Chen H.
, Liu F.
, Na R.
, Zhang L.
, Wu Y.
, Sun J.
, et al.
.
Source: The Prostate, 2013 Dec; 73(16), p. 1824-35.
PMID: 24037738
Related Citations
Prediction of prostate cancer from prostate biopsy in Chinese men using a genetic score derived from 24 prostate cancer risk-associated SNPs.
Authors: Jiang H.
, Liu F.
, Wang Z.
, Na R.
, Zhang L.
, Wu Y.
, Zheng J.
, Lin X.
, Jiang D.
, Sun J.
, et al.
.
Source: The Prostate, 2013 Nov; 73(15), p. 1651-9.
PMID: 23868750
Related Citations
Evaluation of reported prostate cancer risk-associated SNPs from genome-wide association studies of various racial populations in Chinese men.
Authors: Na R.
, Liu F.
, Zhang P.
, Ye D.
, Xu C.
, Shao Q.
, Qi J.
, Wang X.
, Chen Z.
, Wang M.
, et al.
.
Source: The Prostate, 2013 Nov; 73(15), p. 1623-35.
PMID: 24038036
Related Citations
Prostate cancer risk-associated genetic markers and their potential clinical utility.
Authors: Xu J.
, Sun J.
, Zheng S.L.
.
Source: Asian Journal Of Andrology, 2013 May; 15(3), p. 314-22.
PMID: 23564047
Related Citations
A novel germline mutation in HOXB13 is associated with prostate cancer risk in Chinese men.
Authors: Lin X.
, Qu L.
, Chen Z.
, Xu C.
, Ye D.
, Shao Q.
, Wang X.
, Qi J.
, Chen Z.
, Zhou F.
, et al.
.
Source: The Prostate, 2013 Jan; 73(2), p. 169-75.
PMID: 22718278
Related Citations
HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG).
Authors: Xu J.
, Lange E.M.
, Lu L.
, Zheng S.L.
, Wang Z.
, Thibodeau S.N.
, Cannon-Albright L.A.
, Teerlink C.C.
, Camp N.J.
, Johnson A.M.
, et al.
.
Source: Human Genetics, 2013 Jan; 132(1), p. 5-14.
PMID: 23064873
Related Citations
Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4.
Authors: Xu J.
, Mo Z.
, Ye D.
, Wang M.
, Liu F.
, Jin G.
, Xu C.
, Wang X.
, Shao Q.
, Chen Z.
, et al.
.
Source: Nature Genetics, 2012 Nov; 44(11), p. 1231-5.
PMID: 23023329
Related Citations
Using graded response model for the prediction of prostate cancer risk.
Authors: Chen S.H.
, Ip E.H.
, Xu J.
, Sun J.
, Hsu F.C.
.
Source: Human Genetics, 2012 Aug; 131(8), p. 1327-36.
PMID: 22461065
Related Citations
Validation of prostate cancer risk-related loci identified from genome-wide association studies using family-based association analysis: evidence from the International Consortium for Prostate Cancer Genetics (ICPCG).
Authors: Jin G.
, Lu L.
, Cooney K.A.
, Ray A.M.
, Zuhlke K.A.
, Lange E.M.
, Cannon-Albright L.A.
, Camp N.J.
, Teerlink C.C.
, Fitzgerald L.M.
, et al.
.
Source: Human Genetics, 2012 Jul; 131(7), p. 1095-103.
PMID: 22198737
Related Citations
Genome-wide two-locus epistasis scans in prostate cancer using two European populations.
Authors: Tao S.
, Feng J.
, Webster T.
, Jin G.
, Hsu F.C.
, Chen S.H.
, Kim S.T.
, Wang Z.
, Zhang Z.
, Zheng S.L.
, et al.
.
Source: Human Genetics, 2012 Jul; 131(7), p. 1225-34.
PMID: 22367438
Related Citations
Predictive performance of prostate cancer risk in Chinese men using 33 reported prostate cancer risk-associated SNPs.
Authors: Zheng J.
, Liu F.
, Lin X.
, Wang X.
, Ding Q.
, Jiang H.
, Chen H.
, Lu D.
, Jin G.
, Hsing A.W.
, et al.
.
Source: The Prostate, 2012 Apr; 72(5), p. 577-83.
PMID: 21796652
Related Citations
Association of prostate cancer risk with SNPs in regions containing androgen receptor binding sites captured by ChIP-On-chip analyses.
Authors: Lu Y.
, Sun J.
, Kader A.K.
, Kim S.T.
, Kim J.W.
, Liu W.
, Sun J.
, Lu D.
, Feng J.
, Zhu Y.
, et al.
.
Source: The Prostate, 2012 Mar; 72(4), p. 376-85.
PMID: 21671247
Related Citations
A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants.
Authors: Tao S.
, Wang Z.
, Feng J.
, Hsu F.C.
, Jin G.
, Kim S.T.
, Zhang Z.
, Gronberg H.
, Zheng L.S.
, Isaacs W.B.
, et al.
.
Source: Carcinogenesis, 2012 Mar; 33(3), p. 598-603.
PMID: 22219177
Related Citations
Replication and cumulative effects of GWAS-identified genetic variations for prostate cancer in Asians: a case-control study in the ChinaPCa consortium.
Authors: Wang M.
, Liu F.
, Hsing A.W.
, Wang X.
, Shao Q.
, Qi J.
, Ye Y.
, Wang Z.
, Chen H.
, Gao X.
, et al.
.
Source: Carcinogenesis, 2012 Feb; 33(2), p. 356-60.
PMID: 22114074
Related Citations
Human polymorphisms at long non-coding RNAs (lncRNAs) and association with prostate cancer risk.
Authors: Jin G.
, Sun J.
, Isaacs S.D.
, Wiley K.E.
, Kim S.T.
, Chu L.W.
, Zhang Z.
, Zhao H.
, Zheng S.L.
, Isaacs W.B.
, et al.
.
Source: Carcinogenesis, 2011 Nov; 32(11), p. 1655-9.
PMID: 21856995
Related Citations
A genome-wide survey over the ChIP-on-chip identified androgen receptor-binding genomic regions identifies a novel prostate cancer susceptibility locus at 12q13.13.
Authors: Feng J.
, Sun J.
, Kim S.T.
, Lu Y.
, Wang Z.
, Zhang Z.
, Gronberg H.
, Isaacs W.B.
, Zheng S.L.
, Xu J.
.
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2011 Nov; 20(11), p. 2396-403.
PMID: 21960693
Related Citations
Systematic confirmation study of reported prostate cancer risk-associated single nucleotide polymorphisms in Chinese men.
Authors: Liu F.
, Hsing A.W.
, Wang X.
, Shao Q.
, Qi J.
, Ye Y.
, Wang Z.
, Chen H.
, Gao X.
, Wang G.
, et al.
.
Source: Cancer Science, 2011 Oct; 102(10), p. 1916-20.
PMID: 21756274
Related Citations
Genetic variants in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes are prognostic markers of prostate cancer-specific mortality.
Authors: Lin D.W.
, FitzGerald L.M.
, Fu R.
, Kwon E.M.
, Zheng S.L.
, Kolb S.
, Wiklund F.
, Stattin P.
, Isaacs W.B.
, Xu J.
, et al.
.
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2011 Sep; 20(9), p. 1928-36.
PMID: 21846818
Related Citations
Large-scale fine mapping of the HNF1B locus and prostate cancer risk.
Authors: Berndt S.I.
, Sampson J.
, Yeager M.
, Jacobs K.B.
, Wang Z.
, Hutchinson A.
, Chung C.
, Orr N.
, Wacholder S.
, Chatterjee N.
, et al.
.
Source: Human Molecular Genetics, 2011-08-15 00:00:00.0; 20(16), p. 3322-9.
EPub date: 2011-08-15 00:00:00.0.
PMID: 21576123
Related Citations
Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer.
Authors: Chung C.C.
, Ciampa J.
, Yeager M.
, Jacobs K.B.
, Berndt S.I.
, Hayes R.B.
, Gonzalez-Bosquet J.
, Kraft P.
, Wacholder S.
, Orr N.
, et al.
.
Source: Human Molecular Genetics, 2011-07-15 00:00:00.0; 20(14), p. 2869-78.
EPub date: 2011-07-15 00:00:00.0.
PMID: 21531787
Related Citations
Genome-wide copy-number variation analysis identifies common genetic variants at 20p13 associated with aggressiveness of prostate cancer.
Authors: Jin G.
, Sun J.
, Liu W.
, Zhang Z.
, Chu L.W.
, Kim S.T.
, Sun J.
, Feng J.
, Duggan D.
, Carpten J.D.
, et al.
.
Source: Carcinogenesis, 2011 Jul; 32(7), p. 1057-62.
PMID: 21551127
Related Citations
Functional annotation of risk loci identified through genome-wide association studies for prostate cancer.
Authors: Lu Y.
, Zhang Z.
, Yu H.
, Zheng S.L.
, Isaacs W.B.
, Xu J.
, Sun J.
.
Source: The Prostate, 2011-06-15 00:00:00.0; 71(9), p. 955-63.
EPub date: 2011-06-15 00:00:00.0.
PMID: 21541972
Related Citations
Inherited genetic markers discovered to date are able to identify a significant number of men at considerably elevated risk for prostate cancer.
Authors: Sun J.
, Kader A.K.
, Hsu F.C.
, Kim S.T.
, Zhu Y.
, Turner A.R.
, Jin T.
, Zhang Z.
, Adolfsson J.
, Wiklund F.
, et al.
.
Source: The Prostate, 2011-03-01 00:00:00.0; 71(4), p. 421-30.
EPub date: 2011-03-01 00:00:00.0.
PMID: 20878950
Related Citations
Prostate cancer risk-associated variants reported from genome-wide association studies: meta-analysis and their contribution to genetic Variation.
Authors: Kim S.T.
, Cheng Y.
, Hsu F.C.
, Jin T.
, Kader A.K.
, Zheng S.L.
, Isaacs W.B.
, Xu J.
, Sun J.
.
Source: The Prostate, 2010-12-01 00:00:00.0; 70(16), p. 1729-38.
PMID: 20564319
Related Citations
Comparison of two methods for estimating absolute risk of prostate cancer based on single nucleotide polymorphisms and family history.
Authors: Hsu F.C.
, Sun J.
, Zhu Y.
, Kim S.T.
, Jin T.
, Zhang Z.
, Wiklund F.
, Kader A.K.
, Zheng S.L.
, Isaacs W.
, et al.
.
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2010 Apr; 19(4), p. 1083-8.
PMID: 20332264
Related Citations
Inherited genetic variant predisposes to aggressive but not indolent prostate cancer.
Authors: Xu J.
, Zheng S.L.
, Isaacs S.D.
, Wiley K.E.
, Wiklund F.
, Sun J.
, Kader A.K.
, Li G.
, Purcell L.D.
, Kim S.T.
, et al.
.
Source: Proceedings Of The National Academy Of Sciences Of The United States Of America, 2010-02-02 00:00:00.0; 107(5), p. 2136-40.
EPub date: 2010-02-02 00:00:00.0.
PMID: 20080650
Related Citations
Identification of a new prostate cancer susceptibility locus on chromosome 8q24.
Authors: Yeager M.
, Chatterjee N.
, Ciampa J.
, Jacobs K.B.
, Gonzalez-Bosquet J.
, Hayes R.B.
, Kraft P.
, Wacholder S.
, Orr N.
, Berndt S.
, et al.
.
Source: Nature Genetics, 2009 Oct; 41(10), p. 1055-7.
PMID: 19767755
Related Citations
Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients.
Authors: Kader A.K.
, Sun J.
, Isaacs S.D.
, Wiley K.E.
, Yan G.
, Kim S.T.
, Fedor H.
, DeMarzo A.M.
, Epstein J.I.
, Walsh P.C.
, et al.
.
Source: The Prostate, 2009-08-01 00:00:00.0; 69(11), p. 1195-205.
PMID: 19434657
Related Citations
Prostate cancer risk associated loci in African Americans.
Authors: Xu J.
, Kibel A.S.
, Hu J.J.
, Turner A.R.
, Pruett K.
, Zheng S.L.
, Sun J.
, Isaacs S.D.
, Wiley K.E.
, Kim S.T.
, et al.
.
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2009 Jul; 18(7), p. 2145-9.
PMID: 19549807
Related Citations
Fine-mapping and family-based association analyses of prostate cancer risk variants at Xp11.
Authors: Lu L.
, Sun J.
, Isaacs S.D.
, Wiley K.E.
, Smith S.
, Pruett K.
, Zhu Y.
, Zhang Z.
, Wiklund F.
, Grönberg H.
, et al.
.
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2009 Jul; 18(7), p. 2132-6.
PMID: 19549809
Related Citations
Two independent prostate cancer risk-associated Loci at 11q13.
Authors: Zheng S.L.
, Stevens V.L.
, Wiklund F.
, Isaacs S.D.
, Sun J.
, Smith S.
, Pruett K.
, Wiley K.E.
, Kim S.T.
, Zhu Y.
, et al.
.
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2009 Jun; 18(6), p. 1815-20.
PMID: 19505914
Related Citations
Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk.
Authors: Chang B.L.
, Cramer S.D.
, Wiklund F.
, Isaacs S.D.
, Stevens V.L.
, Sun J.
, Smith S.
, Pruett K.
, Romero L.M.
, Wiley K.E.
, et al.
.
Source: Human Molecular Genetics, 2009-04-01 00:00:00.0; 18(7), p. 1368-75.
EPub date: 2009-04-01 00:00:00.0.
PMID: 19153072
Related Citations
A novel prostate cancer susceptibility locus at 19q13.
Authors: Hsu F.C.
, Sun J.
, Wiklund F.
, Isaacs S.D.
, Wiley K.E.
, Purcell L.D.
, Gao Z.
, Stattin P.
, Zhu Y.
, Kim S.T.
, et al.
.
Source: Cancer Research, 2009-04-01 00:00:00.0; 69(7), p. 2720-3.
EPub date: 2009-04-01 00:00:00.0.
PMID: 19318570
Related Citations
Association of a germ-line copy number variation at 2p24.3 and risk for aggressive prostate cancer.
Authors: Liu W.
, Sun J.
, Li G.
, Zhu Y.
, Zhang S.
, Kim S.T.
, Sun J.
, Wiklund F.
, Wiley K.
, Isaacs S.D.
, et al.
.
Source: Cancer Research, 2009-03-15 00:00:00.0; 69(6), p. 2176-9.
EPub date: 2009-03-15 00:00:00.0.
PMID: 19258504
Related Citations
Association of reported prostate cancer risk alleles with PSA levels among men without a diagnosis of prostate cancer.
Authors: Wiklund F.
, Zheng S.L.
, Sun J.
, Adami H.O.
, Lilja H.
, Hsu F.C.
, Stattin P.
, Adolfsson J.
, Cramer S.D.
, Duggan D.
, et al.
.
Source: The Prostate, 2009-03-01 00:00:00.0; 69(4), p. 419-27.
PMID: 19116992
Related Citations