Skip to main content

COVID-19 Resources

What people with cancer should know: https://www.cancer.gov/coronavirus

Guidance for cancer researchers: https://www.cancer.gov/coronavirus-researchers

Get the latest public health information from CDC: https://www.cdc.gov/coronavirus

Get the latest research information from NIH: https://www.covid19.nih.gov

Grant Details

Grant Number: 7R01CA112450-03 Interpret this number
Primary Investigator: Concannon, Patrick
Organization: University Of Virginia
Project Title: Atm Mutations in Breast Cancer - a Functional Approach
Fiscal Year: 2007


Abstract

DESCRIPTION (provided by applicant): Ionizing radiation (IR) is a known breast carcinogen in both animals and humans. IR exposure generates a variety of lesions in DNA of which the most dangerous are DNA double strand breaks (DSBs). Genomic instability can result from the presence of unrepaired DSBs leading to cell death or malignant transformation. Eukaryotes have evolved efficient systems for monitoring genomic integrity and responding rapidly to their presence via cell cycle arrest, repair, and/or apoptotic mechanisms. The master regulator of the mammalian cellular DNA DSB response pathway is the protein ATM. ATM is one of several proteins in this pathway encoded by genes implicated in breast cancer susceptibility. Despite the intriguing relationship between IR, breast cancer, and these genes, there is no clear model for how this particular biochemical pathway has specific effects on breast cancer risk. We have now developed a model for the role of ATM. In this "missense-mutation" model we propose that a subset of ATM mutations act by dominant interference, reducing the intrinsic kinase activity of ATM, and/or disrupting protein complexes that include ATM. The model predicts that ATM-mediated risk for breast cancer is specific to carriers of this class of mutation and suggests that agents such as IR, which are potent inducers of ATM, may have enhanced carcinogenic effects in such individuals. In order to explore the complex relationship between ATM, radiation exposure and breast cancer, we initiated the WECARE (Women's Environment Cancer and Radiation Exposure) study in which 2100 women with either unilateral or asynchronous bilateral breast cancer are enrolled. In this collection, breast cancer risk factors have been assessed by questionnaire; both full radiation dosimetry reconstruction, and full mutation screening of the ATM gene have been carried out. Preliminary analysis of the ATM data reveals a significant increase in risk for second primary breast cancers in subjects who received radiation therapy and carry ATM missense mutations. However, mutation status determination was based only on consideration of sequence conservation-no functional confirmation of mutation status was included in the original study. In this new application, we propose to build upon these preliminary findings by directly testing the hypothesis that the incidence of contralateral breast cancer is increased among women who received radiation therapy as a treatment for their first primary breast cancer and who are carriers of specific ATM alleles which dominantly interfere with the cellular response to IR. Our studies will characterize putative ATM mutations identified in the course of WECARE screening for their functional effects on DNA damage response pathways, and then incorporate this information into the analysis of variables for the overall WECARE study.



Publications

A Bayesian Hierarchical Model for Relating Multiple SNPs within Multiple Genes to Disease Risk.
Authors: Duan L. , Thomas D.C. .
Source: International journal of genomics, 2013; 2013, p. 406217.
EPub date: 2013-12-31.
PMID: 24490143
Related Citations

Single nucleotide polymorphisms associated with risk for contralateral breast cancer in the Women's Environment, Cancer, and Radiation Epidemiology (WECARE) Study.
Authors: Teraoka S.N. , Bernstein J.L. , Reiner A.S. , Haile R.W. , Bernstein L. , Lynch C.F. , Malone K.E. , Stovall M. , Capanu M. , Liang X. , et al. .
Source: Breast cancer research : BCR, 2011; 13(6), p. R114.
EPub date: 2011-11-17.
PMID: 22087758
Related Citations

Variants in the ATM gene associated with a reduced risk of contralateral breast cancer.
Authors: Concannon P. , Haile R.W. , Børresen-Dale A.L. , Rosenstein B.S. , Gatti R.A. , Teraoka S.N. , Diep T.A. , Jansen L. , Atencio D.P. , Langholz B. , et al. .
Source: Cancer research, 2008-08-15; 68(16), p. 6486-91.
PMID: 18701470
Related Citations

Rapid screen for truncating ATM mutations by PTT-ELISA.
Authors: Du L. , Lai C.H. , Concannon P. , Gatti R.A. .
Source: Mutation research, 2008-04-02; 640(1-2), p. 139-44.
EPub date: 2008-01-31.
PMID: 18321536
Related Citations

Population-based estimates of breast cancer risks associated with ATM gene variants c.7271T>G and c.1066-6T>G (IVS10-6T>G) from the Breast Cancer Family Registry.
Authors: Bernstein J.L. , Teraoka S. , Southey M.C. , Jenkins M.A. , Andrulis I.L. , Knight J.A. , John E.M. , Lapinski R. , Wolitzer A.L. , Whittemore A.S. , et al. .
Source: Human mutation, 2006 Nov; 27(11), p. 1122-8.
PMID: 16958054
Related Citations

The CHEK2*1100delC allelic variant and risk of breast cancer: screening results from the Breast Cancer Family Registry.
Authors: Bernstein J.L. , Teraoka S.N. , John E.M. , Andrulis I.L. , Knight J.A. , Lapinski R. , Olson E.R. , Wolitzer A.L. , Seminara D. , Whittemore A.S. , et al. .
Source: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2006 Feb; 15(2), p. 348-52.
PMID: 16492927
Related Citations




Back to Top