Skip Navigation
National Institutes of Health: National Cancer Institute: Division of Cancer Control and Population Sciences
Grant Details

Grant Number: 7R01CA085295-13 Interpret this number
Primary Investigator: Daniels, Michael
Organization: University Of Texas, Austin
Project Title: Bayesian Methods for (INCOMPLETE) Longitudinal Cancer Data
Fiscal Year: 2012
Back to top


Abstract

DESCRIPTION (provided by applicant): We continue work from our previous proposal in developing new Bayesian methodology for longitudinal cancer data with missingness. In the presence of missing data that is related to observed or unobserved responses, it is known that mis-specifying the dependence will most often result in biased estimates of mean parameters. In addition, in such settings, flexible, parsimonious dependence models are often necessary. Such models are not currently available for correlation matrices (which form an integral part of many longitudinal models). The first aim of this proposal will introduce a new parameterization for a correlation matrix for longitudinal responses that offers considerable benefits with respect to prior specification and modeling. We will explore several models and priors and their associated properties, computational issues and strategies both with respect to automated parsimonious modeling, posterior sampling, and high-dimensional problems, and their implementation in a wide array of longitudinal models with applications. The second aim will explore the extension of these models to multivariate longitudinal data. In particular, we will explore the 'ordering' of the multivariate longitudinal response vector with regards to parsimonious models and prior specification and correlation/covariance structures for which this ordering is not an issue. In the third aim, we will develop new Bayesian approaches for causal inference in longitudinal cancer studies in which repeatedly measured outcomes may be informatively missing due to loss to follow-up or protocol-defined events (progression or death). In seeking to draw inference about causal estimands, non-identifiable assumptions are required. We will introduce low-dimensional, interpretable parameterizations of these assumptions and elicit priors for these parameters from scientific experts. These methods will be used to answer questions of interest from several recent cancer clinical trials including assessing potential surrogate markers (Specific Aim 1), exploring the relationship between patient reported (quality of life) and physician reported (toxicity) outcomes (Specific Aim 2), and making inference at the end of quality of life studies when subjects have dropped out due to cancer progression or death (Specific Aim 3). PUBLIC HEALTH RELEVANCE: The new methods proposed in this application will have important public health benefits. They will facilitate drawing correct inferences from quality of life studies for late stage cancers, understanding the relationship between physician reported and patient reported outcomes, and making earlier determinations of treatment effects.

Back to top


Publications

Pattern mixture models for the analysis of repeated attempt designs.
Authors: Daniels M.J. , Jackson D. , Feng W. , White I.R. .
Source: Biometrics, 2015 Dec; 71(4), p. 1160-7.
EPub date: 2015-07-06.
PMID: 26149119
Related Citations

Quantile regression in the presence of monotone missingness with sensitivity analysis.
Authors: Liu M. , Daniels M.J. , Perri M.G. .
Source: Biostatistics (Oxford, England), 2016 Jan; 17(1), p. 108-21.
EPub date: 2015-06-03.
PMID: 26041008
Related Citations

Bayesian modeling of the covariance structure for irregular longitudinal data using the partial autocorrelation function.
Authors: Su L. , Daniels M.J. .
Source: Statistics in medicine, 2015-05-30; 34(12), p. 2004-18.
EPub date: 2015-03-12.
PMID: 25762065
Related Citations

Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates.
Authors: Daniels M.J. , Wang C. , Marcus B.H. .
Source: Biometrics, 2014 Mar; 70(1), p. 62-72.
EPub date: 2013-12-10.
PMID: 24571539
Related Citations

A semiparametric approach to simultaneous covariance estimation for bivariate sparse longitudinal data.
Authors: Das K. , Daniels M.J. .
Source: Biometrics, 2014 Mar; 70(1), p. 33-43.
EPub date: 2014-01-08.
PMID: 24400941
Related Citations

Causal inference for bivariate longitudinal quality of life data in presence of death by using global odds ratios.
Authors: Lee K. , Daniels M.J. .
Source: Statistics in medicine, 2013-10-30; 32(24), p. 4275-84.
EPub date: 2013-05-30.
PMID: 23720372
Related Citations

Flexible marginalized models for bivariate longitudinal ordinal data.
Authors: Lee K. , Daniels M.J. , Joo Y. .
Source: Biostatistics (Oxford, England), 2013 Jul; 14(3), p. 462-76.
EPub date: 2013-01-29.
PMID: 23365416
Related Citations

An exploration of fixed and random effects selection for longitudinal binary outcomes in the presence of nonignorable dropout.
Authors: Li N. , Daniels M.J. , Li G. , Elashoff R.M. .
Source: Biometrical journal. Biometrische Zeitschrift, 2013 Jan; 55(1), p. 17-37.
EPub date: 2012-11-02.
PMID: 23124889
Related Citations

Bayesian inference for the causal effect of mediation.
Authors: Daniels M.J. , Roy J.A. , Kim C. , Hogan J.W. , Perri M.G. .
Source: Biometrics, 2012 Dec; 68(4), p. 1028-36.
EPub date: 2012-09-24.
PMID: 23005030
Related Citations

Bayesian model selection for incomplete data using the posterior predictive distribution.
Authors: Daniels M.J. , Chatterjee A.S. , Wang C. .
Source: Biometrics, 2012 Dec; 68(4), p. 1055-63.
EPub date: 2012-05-02.
PMID: 22551040
Related Citations

Multiple imputation of missing phenotype data for QTL mapping.
Authors: Bobb J.F. , Scharfstein D.O. , Daniels M.J. , Collins F.S. , Kelada S. .
Source: Statistical applications in genetics and molecular biology, 2011; 10(1), p. Article 29.
PMID: 24683667
Related Citations

Marginalized models for longitudinal ordinal data with application to quality of life studies.
Authors: Lee K. , Daniels M.J. .
Source: Statistics in medicine, 2008-09-20; 27(21), p. 4359-80.
PMID: 18613246
Related Citations

A class of markov models for longitudinal ordinal data.
Authors: Lee K. , Daniels M.J. .
Source: Biometrics, 2007 Dec; 63(4), p. 1060-7.
PMID: 18078479
Related Citations

On estimation of vaccine efficacy using validation samples with selection bias.
Authors: Scharfstein D.O. , Halloran M.E. , Chu H. , Daniels M.J. .
Source: Biostatistics (Oxford, England), 2006 Oct; 7(4), p. 615-29.
EPub date: 2006-03-23.
PMID: 16556610
Related Citations

Longitudinal profiling of health care units based on continuous and discrete patient outcomes.
Authors: Daniels M.J. , Normand S.L. .
Source: Biostatistics (Oxford, England), 2006 Jan; 7(1), p. 1-15.
EPub date: 2005-05-25.
PMID: 15917373
Related Citations

Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes.
Authors: Scharfstein D.O. , Daniels M.J. , Robins J.M. .
Source: Biostatistics (Oxford, England), 2003 Oct; 4(4), p. 495-512.
PMID: 14557107
Related Citations

Modelling the random effects covariance matrix in longitudinal data.
Authors: Daniels M.J. , Zhao Y.D. .
Source: Statistics in medicine, 2003-05-30; 22(10), p. 1631-47.
PMID: 12720301
Related Citations

Dynamic conditionally linear mixed models for longitudinal data.
Authors: Pourahmadi M. , Daniels M.J. .
Source: Biometrics, 2002 Mar; 58(1), p. 225-31.
PMID: 11890319
Related Citations