Grant Details
Grant Number: |
1R01CA183793-01A1 Interpret this number |
Primary Investigator: |
Wang, Wenyi |
Organization: |
University Of Tx Md Anderson Can Ctr |
Project Title: |
Statistical Methods for Genomic Analysis of Heterogeneous Tumors |
Fiscal Year: |
2014 |
Abstract
DESCRIPTION (provided by applicant): Solid tissue samples frequently consist of two distinct compartments, an epithelium-derived tumor and its surrounding stroma. Current analysis of tissue samples composed of both tumor cells and stromal cells may under-detect gene expression signatures associated with cancer prognosis or response to treatment. Modeling the separate tissue compartments is necessary for a better understanding of the biological mechanisms underlying cancer. However, compartmental modeling is difficult from a methodological perspective, and adequate statistical methods have not yet been developed for this purpose. Current methods for in silico separation of expression levels from different compartments of a tissue sample have limited utility as they require previous knowledge of either the various mixing proportions of the patient samples, or the actual expression levels in a few genes (i.e., reference genes) across all tissue compartments. This challenge significantly limits our ability to identify molecular subtypes in both tumor and stroma that are predictive of personalized therapeutic targets. This proposal is to develop novel methods and analytic tools to address these important challenges for the in silico dissection of tumor samples and to demonstrate the utility of these tools by investigating the effect of individual tumor sample components and their interactions with drug treatments for lung cancer. Our Aim 1 will provide a Bayesian hierarchical model and related software tools that will have the ability to computationally "dissect" signals within patient samples. This model will take advantage of all existing data and multiple data types, which consequently reduces the need for the prior knowledge that would otherwise be difficult to obtain. This will enable researchers to investigate the expression profiles of individual tumor tissue and surrounding stromal tissues for a much larger set of samples than was previously feasible. It will also provide new ways to increase the accuracy of the genomic analysis of any mixed samples. Our Aim 2 will re-analyze, by deconvolution, what is to our knowledge the largest set of genomic data for the molecular profiling of lung tumors, all of which were collected at MD Anderson Cancer Center. Lung cancer leads amongst all cancers in causing death anywhere in the world. A thorough understanding of tumor biology is critical to the design of effective treatment modalities. Our analyses will include genomic data from more than 500 patients, generated from two innovative biomarker-based clinical trials: the Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) trials, and the Profiling of Resistance Patterns & Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification (PROSPECT) trials. We focus on the study of one prototype example, lung cancer, because of the public impact of the disease and also the likely role of the tumor-stroma interaction in determining clinical outcomes. Our proof-of-principle investigation of the lung cancer data would be the first of its kind, and has the potential to identify new biomarkers predictive of the effects of drug treatments on the survival time of individuals with lung cancer.
Publications
Accelerated somatic mutation calling for whole-genome and whole-exome sequencing data from heterogenous tumor samples.
Authors: Ji S.
, Zhu T.
, Sethia A.
, Wang W.
.
Source: Genome Research, 2024-05-03 00:00:00.0; , .
EPub date: 2024-05-03 00:00:00.0.
PMID: 38589250
Related Citations
TP53 gain-of-function mutation modulates the immunosuppressive microenvironment in non-HPV-associated oral squamous cell carcinoma.
Authors: Shi Y.
, Ren X.
, Cao S.
, Chen X.
, Yuan B.
, Brasil da Costa F.H.
, Rodriguez Rosario A.E.
, Corona A.
, Michikawa C.
, Veeramachaneni R.
, et al.
.
Source: Journal For Immunotherapy Of Cancer, 2023 Aug; 11(8), .
PMID: 37604640
Related Citations
Unique transcriptional profiles underlie osteosarcomagenesis driven by different p53 mutants.
Authors: Chachad D.
, Patel L.R.
, Recio C.V.
, Pourebrahim R.
, Whitley E.M.
, Wang W.
, Su X.
, Xu A.
, Lee D.F.
, Lozano G.
.
Source: Cancer Research, 2023-05-19 00:00:00.0; , .
EPub date: 2023-05-19 00:00:00.0.
PMID: 37205631
Related Citations
Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression.
Authors: Cao S.
, Wang J.R.
, Ji S.
, Yang P.
, Dai Y.
, Guo S.
, Montierth M.D.
, Shen J.P.
, Zhao X.
, Chen J.
, et al.
.
Source: Nature Biotechnology, 2022 Nov; 40(11), p. 1624-1633.
EPub date: 2022-06-13 00:00:00.0.
PMID: 35697807
Related Citations
Impact of Somatic Mutations on Survival Outcomes in Patients With Anaplastic Thyroid Carcinoma.
Authors: Wang J.R.
, Montierth M.
, Xu L.
, Goswami M.
, Zhao X.
, Cote G.
, Wang W.
, Iyer P.
, Dadu R.
, Busaidy N.L.
, et al.
.
Source: Jco Precision Oncology, 2022 Aug; 6, p. e2100504.
PMID: 35977347
Related Citations
The origin of bladder cancer from mucosal field effects.
Authors: Bondaruk J.
, Jaksik R.
, Wang Z.
, Cogdell D.
, Lee S.
, Chen Y.
, Dinh K.N.
, Majewski T.
, Zhang L.
, Cao S.
, et al.
.
Source: Iscience, 2022-07-15 00:00:00.0; 25(7), p. 104551.
EPub date: 2022-06-07 00:00:00.0.
PMID: 35747385
Related Citations
Bayesian Edge Regression in Undirected Graphical Models to Characterize Interpatient Heterogeneity in Cancer.
Authors: Wang Z.
, Kaseb A.O.
, Amin H.M.
, Hassan M.M.
, Wang W.
, Morris J.S.
.
Source: Journal Of The American Statistical Association, 2022; 117(538), p. 533-546.
EPub date: 2022-01-05 00:00:00.0.
PMID: 36090952
Related Citations
Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse.
Authors: Taavitsainen S.
, Engedal N.
, Cao S.
, Handle F.
, Erickson A.
, Prekovic S.
, Wetterskog D.
, Tolonen T.
, Vuorinen E.M.
, Kiviaho A.
, et al.
.
Source: Nature Communications, 2021-09-06 00:00:00.0; 12(1), p. 5307.
EPub date: 2021-09-06 00:00:00.0.
PMID: 34489465
Related Citations
Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes.
Authors: Dentro S.C.
, Leshchiner I.
, Haase K.
, Tarabichi M.
, Wintersinger J.
, Deshwar A.G.
, Yu K.
, Rubanova Y.
, Macintyre G.
, Demeulemeester J.
, et al.
.
Source: Cell, 2021-04-15 00:00:00.0; 184(8), p. 2239-2254.e39.
EPub date: 2021-04-07 00:00:00.0.
PMID: 33831375
Related Citations
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples.
Authors: Bailey M.H.
, Meyerson W.U.
, Dursi L.J.
, Wang L.B.
, Dong G.
, Liang W.W.
, Weerasinghe A.
, Li S.
, Li Y.
, Kelso S.
, et al.
.
Source: Nature Communications, 2020-09-21 00:00:00.0; 11(1), p. 4748.
EPub date: 2020-09-21 00:00:00.0.
PMID: 32958763
Related Citations
HepatoScore-14: Measures of biological heterogeneity significantly improve prediction of hepatocellular carcinoma risk.
Authors: Morris J.S.
, Hassan M.M.
, Zohner Y.E.
, Wang Z.
, Xiao L.
, Rashid A.
, Haque A.
, Abdel-Wahab R.
, Mohamed Y.I.
, Ballard K.L.
, et al.
.
Source: Hepatology (baltimore, Md.), 2020-09-15 00:00:00.0; , .
EPub date: 2020-09-15 00:00:00.0.
PMID: 32931023
Related Citations
Sex differences in oncogenic mutational processes.
Authors: Li C.H.
, Prokopec S.D.
, Sun R.X.
, Yousif F.
, Schmitz N.
, PCAWG Tumour Subtypes and Clinical Translation
, Boutros P.C.
, PCAWG Consortium
.
Source: Nature Communications, 2020-08-28 00:00:00.0; 11(1), p. 4330.
EPub date: 2020-08-28 00:00:00.0.
PMID: 32859912
Related Citations
A pedigree-based prediction model identifies carriers of deleterious de novo mutations in families with Li-Fraumeni syndrome.
Authors: Gao F.
, Pan X.
, Dodd-Eaton E.B.
, Recio C.V.
, Montierth M.D.
, Bojadzieva J.
, Mai P.L.
, Zelley K.
, Johnson V.E.
, Braun D.
, et al.
.
Source: Genome Research, 2020 Aug; 30(8), p. 1170-1180.
EPub date: 2020-08-18 00:00:00.0.
PMID: 32817165
Related Citations
BAYESIAN VARIABLE SELECTION FOR SURVIVAL DATA USING INVERSE MOMENT PRIORS.
Authors: Nikooienejad A.
, Wang W.
, Johnson V.E.
.
Source: The Annals Of Applied Statistics, 2020 Jun; 14(2), p. 809-828.
EPub date: 2020-06-29 00:00:00.0.
PMID: 33456641
Related Citations
Immuno-genomic landscape of osteosarcoma.
Authors: Wu C.C.
, Beird H.C.
, Andrew Livingston J.
, Advani S.
, Mitra A.
, Cao S.
, Reuben A.
, Ingram D.
, Wang W.L.
, Ju Z.
, et al.
.
Source: Nature Communications, 2020-02-21 00:00:00.0; 11(1), p. 1008.
EPub date: 2020-02-21 00:00:00.0.
PMID: 32081846
Related Citations
Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig.
Authors: Rubanova Y.
, Shi R.
, Harrigan C.F.
, Li R.
, Wintersinger J.
, Sahin N.
, Deshwar A.
, PCAWG Evolution and Heterogeneity Working Group
, Morris Q.
, PCAWG Consortium
.
Source: Nature Communications, 2020-02-05 00:00:00.0; 11(1), p. 731.
EPub date: 2020-02-05 00:00:00.0.
PMID: 32024834
Related Citations
Inferring structural variant cancer cell fraction.
Authors: Cmero M.
, Yuan K.
, Ong C.S.
, Schröder J.
, PCAWG Evolution and Heterogeneity Working Group
, Corcoran N.M.
, Papenfuss T.
, Hovens C.M.
, Markowetz F.
, Macintyre G.
, et al.
.
Source: Nature Communications, 2020-02-05 00:00:00.0; 11(1), p. 730.
EPub date: 2020-02-05 00:00:00.0.
PMID: 32024845
Related Citations
Pan-cancer analysis of whole genomes.
Authors: ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium
.
Source: Nature, 2020 02; 578(7793), p. 82-93.
EPub date: 2020-02-05 00:00:00.0.
PMID: 32025007
Related Citations
The evolutionary history of 2,658 cancers.
Authors: Gerstung M.
, Jolly C.
, Leshchiner I.
, Dentro S.C.
, Gonzalez S.
, Rosebrock D.
, Mitchell T.J.
, Rubanova Y.
, Anur P.
, Yu K.
, et al.
.
Source: Nature, 2020 02; 578(7793), p. 122-128.
EPub date: 2020-02-06 00:00:00.0.
PMID: 32025013
Related Citations
Penetrance Estimates Over Time to First and Second Primary Cancer Diagnosis in Families with Li-Fraumeni Syndrome: A Single Institution Perspective.
Authors: Shin S.J.
, Dodd-Eaton E.B.
, Gao F.
, Bojadzieva J.
, Chen J.
, Kong X.
, Amos C.I.
, Ning J.
, Strong L.C.
, Wang W.
.
Source: Cancer Research, 2020-01-15 00:00:00.0; 80(2), p. 347-353.
EPub date: 2019-11-12 00:00:00.0.
PMID: 31719099
Related Citations
Penetrance of Different Cancer Types in Families with Li-Fraumeni Syndrome: A Validation Study Using Multicenter Cohorts.
Authors: Shin S.J.
, Dodd-Eaton E.B.
, Peng G.
, Bojadzieva J.
, Chen J.
, Amos C.I.
, Frone M.N.
, Khincha P.P.
, Mai P.L.
, Savage S.A.
, et al.
.
Source: Cancer Research, 2020-01-15 00:00:00.0; 80(2), p. 354-360.
EPub date: 2019-11-12 00:00:00.0.
PMID: 31719101
Related Citations
A community effort to create standards for evaluating tumor subclonal reconstruction.
Authors: Salcedo A.
, Tarabichi M.
, Espiritu S.M.G.
, Deshwar A.G.
, David M.
, Wilson N.M.
, Dentro S.
, Wintersinger J.A.
, Liu L.Y.
, Ko M.
, et al.
.
Source: Nature Biotechnology, 2020 01; 38(1), p. 97-107.
EPub date: 2020-01-09 00:00:00.0.
PMID: 31919445
Related Citations
Systematic Assessment of Tumor Purity and Its Clinical Implications.
Authors: Haider S.
, Tyekucheva S.
, Prandi D.
, Fox N.S.
, Ahn J.
, Xu A.W.
, Pantazi A.
, Park P.J.
, Laird P.W.
, Sander C.
, et al.
.
Source: Jco Precision Oncology, 2020; 4, .
EPub date: 2020-09-04 00:00:00.0.
PMID: 33015524
Related Citations
Integration of transcriptional and mutational data simplifies the stratification of peripheral T-cell lymphoma.
Authors: Maura F.
, Agnelli L.
, Leongamornlert D.
, Bolli N.
, Chan W.C.
, Dodero A.
, Carniti C.
, Heavican T.B.
, Pellegrinelli A.
, Pruneri G.
, et al.
.
Source: American Journal Of Hematology, 2019 06; 94(6), p. 628-634.
EPub date: 2019-03-19 00:00:00.0.
PMID: 30829413
Related Citations
Bayesian Semiparametric Estimation of Cancer-specific Age-at-onset Penetrance with Application to Li-Fraumeni Syndrome.
Authors: Shin S.J.
, Yuan Y.
, Strong L.C.
, Bojadzieva J.
, Wang W.
.
Source: Journal Of The American Statistical Association, 2019; 114(526), p. 541-552.
EPub date: 2018-08-15 00:00:00.0.
PMID: 31485091
Related Citations
Neutral tumor evolution?
Authors: Tarabichi M.
, Martincorena I.
, Gerstung M.
, Leroi A.M.
, Markowetz F.
, PCAWG Evolution and Heterogeneity Working Group
, Spellman P.T.
, Morris Q.D.
, Lingjærde O.C.
, Wedge D.C.
, et al.
.
Source: Nature Genetics, 2018 12; 50(12), p. 1630-1633.
PMID: 30374075
Related Citations
Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration.
Authors: Wang Z.
, Cao S.
, Morris J.S.
, Ahn J.
, Liu R.
, Tyekucheva S.
, Gao F.
, Li B.
, Lu W.
, Tang X.
, et al.
.
Source: Iscience, 2018-11-30 00:00:00.0; 9, p. 451-460.
EPub date: 2018-11-02 00:00:00.0.
PMID: 30469014
Related Citations
A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily.
Authors: Korkut A.
, Zaidi S.
, Kanchi R.S.
, Rao S.
, Gough N.R.
, Schultz A.
, Li X.
, Lorenzi P.L.
, Berger A.C.
, Robertson G.
, et al.
.
Source: Cell Systems, 2018-09-14 00:00:00.0; , .
EPub date: 2018-09-14 00:00:00.0.
PMID: 30268436
Related Citations
Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines.
Authors: Ellrott K.
, Bailey M.H.
, Saksena G.
, Covington K.R.
, Kandoth C.
, Stewart C.
, Hess J.
, Ma S.
, Chiotti K.E.
, McLellan M.
, et al.
.
Source: Cell Systems, 2018-03-28 00:00:00.0; 6(3), p. 271-281.e7.
PMID: 29596782
Related Citations
Accurate RNA Sequencing From Formalin-Fixed Cancer Tissue To Represent High-Quality Transcriptome From Frozen Tissue.
Authors: Li J.
, Fu C.
, Speed T.P.
, Wang W.
, Symmans W.F.
.
Source: Jco Precision Oncology, 2018; 2018, .
EPub date: 2018-01-26 00:00:00.0.
PMID: 29862382
Related Citations
RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods.
Authors: Holik A.Z.
, Law C.W.
, Liu R.
, Wang Z.
, Wang W.
, Ahn J.
, Asselin-Labat M.L.
, Smyth G.K.
, Ritchie M.E.
.
Source: Nucleic Acids Research, 2017-03-17 00:00:00.0; 45(5), p. e30.
PMID: 27899618
Related Citations
Estimating Tp53 Mutation Carrier Probability In Families With Li-fraumeni Syndrome Using Lfspro
Authors: Peng G.
, Bojadzieva J.
, Ballinger M.L.
, Li J.
, Blackford A.L.
, Mai P.L.
, Savage S.A.
, Thomas D.M.
, Strong L.C.
, Wang W.
.
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2017-01-30 00:00:00.0; , .
PMID: 28137790
Related Citations
Bayesian analysis of longitudinal dyadic data with informative missing data using a dyadic shared-parameter model.
Authors: Ahn J.
, Morita S.
, Wang W.
, Yuan Y.
.
Source: Statistical Methods In Medical Research, 2017-01-01 00:00:00.0; , p. 962280217715051.
EPub date: 2017-01-01 00:00:00.0.
PMID: 28629259
Related Citations
MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data.
Authors: Fan Y.
, Xi L.
, Hughes D.S.
, Zhang J.
, Zhang J.
, Futreal P.A.
, Wheeler D.A.
, Wang W.
.
Source: Genome Biology, 2016-08-24 00:00:00.0; 17(1), p. 178.
EPub date: 2016-08-24 00:00:00.0.
PMID: 27557938
Related Citations
Identification of germline DICER1 mutations and loss of heterozygosity in familial Wilms tumour.
Authors: Palculict T.B.
, Ruteshouser E.C.
, Fan Y.
, Wang W.
, Strong L.
, Huff V.
.
Source: Journal Of Medical Genetics, 2016 Jun; 53(6), p. 385-8.
PMID: 26566882
Related Citations
Bayesian variable selection for binary outcomes in high-dimensional genomic studies using non-local priors.
Authors: Nikooienejad A.
, Wang W.
, Johnson V.E.
.
Source: Bioinformatics (oxford, England), 2016-05-01 00:00:00.0; 32(9), p. 1338-45.
EPub date: 2016-05-01 00:00:00.0.
PMID: 26740524
Related Citations
Next-Generation Molecular Testing of Newborn Dried Blood Spots for Cystic Fibrosis.
Authors: Lefterova M.I.
, Shen P.
, Odegaard J.I.
, Fung E.
, Chiang T.
, Peng G.
, Davis R.W.
, Wang W.
, Kharrazi M.
, Schrijver I.
, et al.
.
Source: The Journal Of Molecular Diagnostics : Jmd, 2016 Mar; 18(2), p. 267-82.
PMID: 26847993
Related Citations
The Molecular Taxonomy of Primary Prostate Cancer.
Authors: Cancer Genome Atlas Research Network
.
Source: Cell, 2015-11-05 00:00:00.0; 163(4), p. 1011-25.
PMID: 26544944
Related Citations
An ensemble approach to accurately detect somatic mutations using SomaticSeq.
Authors: Fang L.T.
, Afshar P.T.
, Chhibber A.
, Mohiyuddin M.
, Fan Y.
, Mu J.C.
, Gibeling G.
, Barr S.
, Asadi N.B.
, Gerstein M.B.
, et al.
.
Source: Genome Biology, 2015-09-17 00:00:00.0; 16, p. 197.
EPub date: 2015-09-17 00:00:00.0.
PMID: 26381235
Related Citations
Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection.
Authors: Ewing A.D.
, Houlahan K.E.
, Hu Y.
, Ellrott K.
, Caloian C.
, Yamaguchi T.N.
, Bare J.C.
, P'ng C.
, Waggott D.
, Sabelnykova V.Y.
, et al.
.
Source: Nature Methods, 2015 Jul; 12(7), p. 623-30.
PMID: 25984700
Related Citations
FamSeq: a variant calling program for family-based sequencing data using graphics processing units.
Authors: Peng G.
, Fan Y.
, Wang W.
.
Source: Plos Computational Biology, 2014 Oct; 10(10), p. e1003880.
PMID: 25357123
Related Citations
The somatic genomic landscape of chromophobe renal cell carcinoma.
Authors: Davis C.F.
, Ricketts C.J.
, Wang M.
, Yang L.
, Cherniack A.D.
, Shen H.
, Buhay C.
, Kang H.
, Kim S.C.
, Fahey C.C.
, et al.
.
Source: Cancer Cell, 2014-09-08 00:00:00.0; 26(3), p. 319-30.
EPub date: 2014-09-08 00:00:00.0.
PMID: 25155756
Related Citations