Skip Navigation
Grant Details

Grant Number: 5R01CA168676-02 Interpret this number
Primary Investigator: Lanza, Stephanie
Organization: Pennsylvania State University-Univ Park
Project Title: Advancing Tobacco Research By Integrating Systems Science and Mixture Models
Fiscal Year: 2013
Back to top


Abstract

DESCRIPTION (provided by applicant): Smoking is the leading preventable cause of disease, disability, and death in the United States, but approximately one-fifth of adults smoke cigarettes. Among the approximately 15 million smokers who make a quit attempt every year, the great majority eventually relapse even with smoking cessation aids. While much is known about the etiology of smoking dependence, substantial work remains to effectively help smokers quit and ultimately prevent smoking-related death, most commonly due to cancer, and disease. Smoking cessation occurs within the context of a wide variety of interrelated individual and environmental factors, many of which change rapidly during the first few weeks after quitting. We propose two areas of scientific inquiry to substantially improve smoking cessation outcomes. First, a better understanding of the complex system dynamics that unfold during the smoking cessation process will guide clinicians in the development of interventions that adapt over time to individuals' changing needs and response to particular treatments. Second, a more thorough scientific understanding of differential treatment effects for individuals with different profiles t baseline will guide clinicians in selection of treatments that hold the most promise for different types of individuals. The overall goal of this project is to further the science of smoking cessation by integrating a novel systems-science approach, time-varying effect models, and mixture models, and apply the new approach to analysis of ecological momentary assessment (EMA) data on tobacco use. The specific aims of this project are (1) To establish the relation between the experience of withdrawal over time and survival to smoking cessation milestones (lapse and relapse), and examine the impact of treatment condition, baseline characteristics, and time-varying covariates; (2) To examine differential treatment effects across latent subgroups of individuals reflecting key combinations of baseline factors; (3) To identify latent subgroups characterized by unique dynamic processes occurring during a smoking cessation attempt; and (4) To promote and facilitate uptake of these innovative statistical approaches by tobacco researchers. Results from the proposed project will inform the construction of highly effective smoking cessation interventions that (1) are tailored to the individual and (2) adapt to participant response over time. Importantly, the overall impact of this project extends far beyond the proposed set of analyses; this project will accelerate the pace of smoking cessation research in a sustained, powerful way through rapid, programmatic dissemination of important new analytic methods and design considerations to tobacco researchers.

Back to top


Publications

Nonlinear Varying Coefficient Models with Applications to Studying Photosynthesis.
Authors: Kürüm E, Li R, Wang Y, SEntürk D
Source: J Agric Biol Environ Stat, 2014 Mar 1;19(1), p. 57-81.
PMID: 24976756
Related Citations

Back to top


Estimating Mixture of Gaussian Processes by Kernel Smoothing.
Authors: Huang M, Li R, Wang H, Yao W
Source: J Bus Econ Stat, 2014;32(2), p. 259-270.
PMID: 24976675
Related Citations

Back to top


CALIBRATING NON-CONVEX PENALIZED REGRESSION IN ULTRA-HIGH DIMENSION.
Authors: Wang L, Kim Y, Li R
Source: Ann Stat, 2013 Oct 1;41(5), p. 2505-2536.
PMID: 24948843
Related Citations

Back to top


New methods for advancing research on tobacco dependence using ecological momentary assessments.
Authors: Lanza ST, Piper ME, Shiffman S
Source: Nicotine Tob Res, 2014 May;16 Suppl 2, p. S71-2.
PMID: 24711628
Related Citations

Back to top


Time-varying processes involved in smoking lapse in a randomized trial of smoking cessation therapies.
Authors: Vasilenko SA, Piper ME, Lanza ST, Liu X, Yang J, Li R
Source: Nicotine Tob Res, 2014 May;16 Suppl 2, p. S135-43.
PMID: 24711627
Related Citations

Back to top


Feature Selection for Varying Coefficient Models With Ultrahigh Dimensional Covariates.
Authors: Liu J, Li R, Wu R
Source: J Am Stat Assoc, 2014 Jan 1;109(505), p. 266-274.
PMID: 24678135
Related Citations

Back to top


Changes in substance use-related health risk behaviors on the timeline follow-back interview as a function of length of recall period.
Authors: Buu A, Li R, Walton MA, Yang H, Zimmerman MA, Cunningham RM
Source: Subst Use Misuse, 2014 Aug;49(10), p. 1259-69.
EPub date: 2014 Mar 6.
PMID: 24601785
Related Citations

Back to top


Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A.
Authors: Weinhouse C, Anderson OS, Bergin IL, Vandenbergh DJ, Gyekis JP, Dingman MA, Yang J, Dolinoy DC
Source: Environ Health Perspect, 2014 May;122(5), p. 485-91.
EPub date: 2014 Jan 17.
PMID: 24487385
Related Citations

Back to top


SEMIPARAMETRIC ESTIMATION OF CONDITIONAL HETEROSCEDASTICITY VIA SINGLE-INDEX MODELING.
Authors: Zhu L, Dong Y, Li R
Source: Stat Sin, 2013 Jul;23(3), p. 1215-1235.
PMID: 24470726
Related Citations

Back to top


Control Systems Engineering for Understanding and Optimizing Smoking Cessation Interventions.
Authors: Timms KP, Rivera DE, Collins LM, Piper ME
Source: Proc Am Control Conf, 2013;null, p. 1964-1969.
PMID: 24362946
Related Citations

Back to top


Anhedonia, depressed mood, and smoking cessation outcome.
Authors: Leventhal AM, Piper ME, Japuntich SJ, Baker TB, Cook JW
Source: J Consult Clin Psychol, 2014 Feb;82(1), p. 122-9.
EPub date: 2013 Nov 11.
PMID: 24219183
Related Citations

Back to top


Functional data analysis for dynamical system identification of behavioral processes.
Authors: Trail JB, Collins LM, Rivera DE, Li R, Piper ME, Baker TB
Source: Psychol Methods, 2014 Jun;19(2), p. 175-87.
EPub date: 2013 Sep 30.
PMID: 24079929
Related Citations

Back to top


A dynamical systems approach to understanding self-regulation in smoking cessation behavior change.
Authors: Timms KP, Rivera DE, Collins LM, Piper ME
Source: Nicotine Tob Res, 2014 May;16 Suppl 2, p. S159-68.
EPub date: 2013 Sep 24.
PMID: 24064386
Related Citations

Back to top


Cumulative association between age-related macular degeneration and less studied genetic variants in PLEKHA1/ARMS2/HTRA1: a meta and gene-cluster analysis.
Authors: Yu W, Dong S, Zhao C, Wang H, Dai F, Yang J
Source: Mol Biol Rep, 2013 Oct;40(10), p. 5551-61.
EPub date: 2013 Sep 7.
PMID: 24013816
Related Citations

Back to top


Advancing the understanding of craving during smoking cessation attempts: a demonstration of the time-varying effect model.
Authors: Lanza ST, Vasilenko SA, Liu X, Li R, Piper ME
Source: Nicotine Tob Res, 2014 May;16 Suppl 2, p. S127-34.
EPub date: 2013 Aug 24.
PMID: 23975881
Related Citations

Back to top


Clinical examination for prognostication in comatose cardiac arrest patients.
Authors: Greer DM, Yang J, Scripko PD, Sims JR, Cash S, Wu O, Hafler JP, Schoenfeld DA, Furie KL
Source: Resuscitation, 2013 Nov;84(11), p. 1546-51.
EPub date: 2013 Aug 15.
PMID: 23954666
Related Citations

Back to top


Understanding the role of cessation fatigue in the smoking cessation process.
Authors: Liu X, Li R, Lanza ST, Vasilenko SA, Piper M
Source: Drug Alcohol Depend, 2013 Dec 1;133(2), p. 548-55.
EPub date: 2013 Aug 2.
PMID: 23954071
Related Citations

Back to top


An adaptive truncated product method for combining dependent p-values.
Authors: Sheng X, Yang J
Source: Econ Lett, 2013 May;119(2), p. 180-182.
PMID: 23935232
Related Citations

Back to top


Modeling complexity of EMA data: time-varying lagged effects of negative affect on smoking urges for subgroups of nicotine addiction.
Authors: Shiyko M, Naab P, Shiffman S, Li R
Source: Nicotine Tob Res, 2014 May;16 Suppl 2, p. S144-50.
EPub date: 2013 Aug 3.
PMID: 23911846
Related Citations

Back to top


Early lapses in a cessation attempt: lapse contexts, cessation success, and predictors of early lapse.
Authors: Deiches JF, Baker TB, Lanza S, Piper ME
Source: Nicotine Tob Res, 2013 Nov;15(11), p. 1883-91.
EPub date: 2013 Jun 18.
PMID: 23780705
Related Citations