Skip Navigation
National Institutes of Health: National Cancer Institute: Division of Cancer Control and Population Sciences
Grant Details

Grant Number: 5R01CA154823-02 Interpret this number
Primary Investigator: Klein, Alison
Organization: Johns Hopkins University
Project Title: Validation and Fine-Scale Mapping of Pancreatic Cancer Susceptibility Loci
Fiscal Year: 2012
Back to top


DESCRIPTION (provided by applicant): Pancreatic cancer is the 4th leading cause of cancer death in the United States. This is in large part due to the rapidly fatal course of this disease, as the vast majority of patients die within months of diagnosis and the five- year survival rate is less than 5%. Like all cancers, pancreatic cancer is a fundamentally genetic disease caused by inherited and acquired genetic mutations. Two genome-wide association studies of pancreatic cancer, PanScan I and PanScan II, have recently been completed. These studies have identified four promising regions involved in pancreatic cancer susceptibility: ABO rs505922 (P=4.3.10-6), two correlated SNPs on chromosome 13q22.1, rs9543325 (P=3.3.10-11) and rs9564966 (P=5.9.10-8), rs3790844 (P=2.4.10-10) on chromosome 1q32.1, and rs401681 (P=3.7.10-7) on 5p15.33. The goal of this project is to conduct fine-mapping and large-scale validation genotyping of the potential pancreatic cancer susceptibility variants identified in the recently completed PanScan I and PanScan II studies, in an independent set of 4,000 cases and 4,000 controls from over 10 studies. This will be the first well-powered large-scale replication of these findings. Joint-analysis of these data with the data from PanScanI and II will also be conducted. We will also determine known risk factors for pancreatic cancer including, cigarette smoking and diabetes modify these associations. PUBLIC HEALTH RELEVANCE: Genome-wide association studies (GWAS) are powerful tools to identify changes in DNA associated with diseases. These studies have identified many genes that play an important role in breast, prostate and colon cancers but the first of these studies have only recently been completed for pancreatic cancer. Before the findings of these studies can be translated into the patient setting, replication of the initial findings needs to be conducted to establish that changes in DNA are "truly" associated with pancreatic cancer, not false findings. Furthermore, follow-up GWA studies also have the potential to identify novel associations. Therefore the goal of this study will be to validate the initial pancreatic cancer GWAS findings and identify novel DNA changes that may be associated with pancreatic cancer.

Back to top


Identification Of Germline Genomic Copy Number Variation In Familial Pancreatic Cancer
Authors: Al-Sukhni W. , Joe S. , Lionel A.C. , Zwingerman N. , Zogopoulos G. , Marshall C.R. , Borgida A. , Holter S. , Gropper A. , Moore S. , et al. .
Source: Human Genetics, 2012 Sep; 131(9), p. 1481-94.
PMID: 22665139
Related Citations

Genome-wide Sequencing To Identify The Cause Of Hereditary Cancer Syndromes: With Examples From Familial Pancreatic Cancer
Authors: Roberts N.J. , Klein A.P. .
Source: Cancer Letters, 2013-11-01 00:00:00.0; 340(2), p. 227-33.
PMID: 23196058
Related Citations

Identifying People At A High Risk Of Developing Pancreatic Cancer
Authors: Klein A.P. .
Source: Nature Reviews. Cancer, 2013 Jan; 13(1), p. 66-74.
PMID: 23222481
Related Citations

Recent Progress In Pancreatic Cancer
Authors: Wolfgang C.L. , Herman J.M. , Laheru D.A. , Klein A.P. , Erdek M.A. , Fishman E.K. , Hruban R.H. .
Source: Ca: A Cancer Journal For Clinicians, 2013 Sep; 63(5), p. 318-48.
PMID: 23856911
Related Citations

An Absolute Risk Model To Identify Individuals At Elevated Risk For Pancreatic Cancer In The General Population
Authors: Klein A.P. , Lindström S. , Mendelsohn J.B. , Steplowski E. , Arslan A.A. , Bueno-de-Mesquita H.B. , Fuchs C.S. , Gallinger S. , Gross M. , Helzlsouer K. , et al. .
Source: Plos One, 2013; 8(9), p. e72311.
PMID: 24058443
Related Citations

Genes-environment Interactions In Obesity- And Diabetes-associated Pancreatic Cancer: A Gwas Data Analysis
Authors: Tang H. , Wei P. , Duell E.J. , Risch H.A. , Olson S.H. , Bueno-de-Mesquita H.B. , Gallinger S. , Holly E.A. , Petersen G.M. , Bracci P.M. , et al. .
Source: Cancer Epidemiology, Biomarkers & Prevention : A Publication Of The American Association For Cancer Research, Cosponsored By The American Society Of Preventive Oncology, 2014 Jan; 23(1), p. 98-106.
PMID: 24136929
Related Citations

Tert Gene Harbors Multiple Variants Associated With Pancreatic Cancer Susceptibility
Authors: Campa D. , Rizzato C. , Stolzenberg-Solomon R. , Pacetti P. , Vodicka P. , Cleary S.P. , Capurso G. , Bueno-de-Mesquita H.B. , Werner J. , Gazouli M. , et al. .
Source: International Journal Of Cancer, 2015-11-01 00:00:00.0; 137(9), p. 2175-83.
PMID: 25940397
Related Citations

Common Variation At 2p13.3, 3q29, 7p13 And 17q25.1 Associated With Susceptibility To Pancreatic Cancer
Authors: Childs E.J. , Mocci E. , Campa D. , Bracci P.M. , Gallinger S. , Goggins M. , Li D. , Neale R.E. , Olson S.H. , Scelo G. , et al. .
Source: Nature Genetics, 2015 Aug; 47(8), p. 911-6.
PMID: 26098869
Related Citations

Whole Genome Sequencing Defines The Genetic Heterogeneity Of Familial Pancreatic Cancer
Authors: Roberts N.J. , Norris A.L. , Petersen G.M. , Bondy M.L. , Brand R. , Gallinger S. , Kurtz R.C. , Olson S.H. , Rustgi A.K. , Schwartz A.G. , et al. .
Source: Cancer Discovery, 2016 Feb; 6(2), p. 166-75.
PMID: 26658419
Related Citations